Vitali Giuseppe
Vitali Giuseppe [STF] (Ravenna 1875 - Bologna 1932) Prof. di analisi matematica nelle univ. di Modena (1923), Padova (1926) e Bologna (1930). ◆ [ANM] Teorema di derivazione diLebesgue-V.: [...] v. misura e integrazione: IV 4 c. ...
Leggi Tutto
Riemann Bernhard
Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] le sue componenti covarianti. ◆ [ALG] Teorema di esistenza di R.: v. Riemann, superfici di: V 4 c. ◆ [ALG] Teorema di R.-Lebesgue: v. trasformazione integrale: VI 299 c. ◆ [ALG] Teorema di R.-Roch: v. superfici di Riemann: V 5 c. ◆ [MCF] Variabili ...
Leggi Tutto
integrabile
integràbile [agg. Der. del lat. integrabilis] [LSF] Che può essere integrato, sia nel signif. matematico (→ integrale), sia per significare che si tratta di cosa che può essere aggiunta o [...] funzione f tale che esista l'integrale ∫C f dC; a seconda della natura di questo integrale si parla di funzione i. secondo Lebesgue, secondo Riemann, ecc.: v. misura e integrazione: III 3 f, 4 a. ◆ [MCC] Sistema i.: un sistema meccanico hamiltoniano ...
Leggi Tutto
misurabilemisuràbile [Der. del lat. mensurabilis, da mensurare "misurare" che è da mensura (→ misura)] [LSF] Che può essere misurato, in partic. con un determinato metodo dimisurazione (m. direttamente, [...] magneticamente, ecc.) oppure, spec. nella matematica, secondo un determinata regola o un determinato criterio (m. secondo Lebesgue, ecc.). ◆ [ANM] Funzione m.: v. misura e integrazione: IV 3 a. ...
Leggi Tutto