transfinito In matematica, che va al di là del finito. Numeri t. (o infiniti), numeri che estendono al caso di insiemi con infiniti elementi i concetti di numerocardinale e ordinale dell’aritmetica ordinaria [...] . più grande; questo è indicato con il simbolo ℵ2; e così di seguito.
Cantor si pose il problema di sapere se esistono numericardinali intermedi tra ℵ0 e ℵ1, e più in generale tra ℵn e ℵn+1. Non riuscendo a risolverlo formulò una congettura (ipotesi ...
Leggi Tutto
In matematica, insieme che può essere posto in corrispondenza biunivoca con l’insieme dei numeri interi naturali. Un insieme n. è dunque necessariamente un insieme infinito; ogni suo sottoinsieme è finito [...] oppure è esso stesso n.; da ciò segue che agli insiemi n. corrisponde il minimo n. cardinale transfinito (➔ transfinito). Tale numerocardinale si chiama potenza del n. e si usa denotare con la prima lettera dell’alfabeto ebraico, accompagnata dall’ ...
Leggi Tutto
Matematica
Operazione aritmetica mediante la quale si trova la somma di due o più numeri (detti addendi o termini). Nell’accezione più comune il termine a. si riferisce al caso dei numeri interi positivi. [...] modo: date due collezioni di oggetti, la prima nella classe di collezioni caratterizzata dal numerocardinale a, la seconda nella classe caratterizzata dal numerocardinale b, si forma la collezione che contiene tanto gli elementi della prima quanto ...
Leggi Tutto
In aritmetica, numero che indica il posto che un ente ha in una successione, il cosiddetto numero d’ordine (primo, secondo ecc., oppure 1°, 2° ecc., o I, II ecc.). Teoria dei numeri ordinali Teoria matematica [...] insieme astraendo solo dalla qualità degli elementi e non anche dal loro ordine, come avviene nel caso del corrispondente numerocardinale, per questo designato con il simbolo S̅) o anche con una lettera dell’alfabeto greco). Proprietà degli ordinali ...
Leggi Tutto
Linguistica
In fonologia, articolazioni c. sono quelle in cui nella tenuta non vi è occlusione che arresti la corrente espiratoria (la quale, dunque, fluisce ininterrotta durante tutta l’articolazione [...] le possibili successioni decimali, limitate o illimitate. Potenza del c. È la potenza dell’insieme dei numeri reali (cioè il numerocardinale dei suoi elementi) e quindi anche quella di ogni insieme che possa essere posto in corrispondenza biunivoca ...
Leggi Tutto
Algebra
Irving Kaplansky
sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] su un corpo. La struttura di uno spazio vettoriale a dimensione finita è completamente determinata da un numerocardinale, la sua dimensione, cioè il numero degli elementi di una sua base. Pertanto, l'algebra lineare non si sofferma a studiare gli ...
Leggi Tutto
Logica matematica
Abraham Robinson
*La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] assiomatico ‛ragionevole' per la teoria degli insiemi) che per ogni insieme S esiste un insieme S′ il cui numerocardinale è maggiore del numerocardinale di S. In particolare si può dimostrare che S′ è l'insieme dei sottoinsiemi di S. Tuttavia gli ...
Leggi Tutto
Scienza indiana: periodo classico. Matematica
Takao Hayashi
Matematica
'Gaṇita' ('matematica')
Prima dell'introduzione e diffusione dell'astrologia oroscopica e dell'astronomia matematica nella società [...] a si può considerare un analogo dell''aleph zero', il più piccolo numerocardinale transfinito della matematica moderna. Il più piccolo numero di ciascuno degli altri sottoinsiemi è dato, rispettivamente, da aa, bb con b=(aa)2, cc con c=bb, dd con ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] in un tutto M di oggetti distinti e ben definiti della nostra intuizione e del nostro pensiero" e la sua potenza (o numerocardinale) è "quel concetto generale che, per mezzo della nostra attiva facoltà di pensare, si deduce dall'insieme M, facendo ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica
Solomon Feferman
Le scuole di filosofia della matematica
I più importanti programmi di fondazione della [...] card(X) potesse essere rappresentato in termini di oggetti o nozioni più basilari.
Se si accetta l'associazione di un numerocardinale card(X) a ciascun insieme X in una qualche maniera che soddisfi la condizione sopra esposta per l'uguaglianza di ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
numerabile
numeràbile agg. e s. m. [dal lat. numerabĭlis]. – Che può essere numerato, cioè distinto con numeri, oppure calcolato esattamente: ci darà la quantità esatta delle ore e minuti ..., se la frequenza fusse da noi n. (Galilei). In...