• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
4 risultati
Tutti i risultati [10]
Analisi matematica [4]
Matematica [6]
Fisica [4]
Fisica matematica [4]
Meccanica quantistica [3]
Algebra [3]
Storia della fisica [2]
Temi generali [2]
Fisica nucleare [1]
Fisica dei solidi [1]

operatore

Dizionario delle Scienze Fisiche (1996)

operatore operatóre [Der. del lat. operator -oris "che compie operazioni" (→ operazione)] [ALG] [ANM] Ente che determina un'operazione da eseguirsi su un altro ente, quindi simb. di un'operazione o, [...] in partic., o. binario, ternario, ecc. per n=2, 3, ...): simb. di un'operazione (o anche, più in generale, di un'applicazione) che agisce su n elementi; così, di funzioni, quale, per es., l'o. dalembertiano, laplaciano, ecc. (→ le singole voci). ◆ ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su operatore (2)
Mostra Tutti

dalembertiano

Dizionario delle Scienze Fisiche (1996)

dalembertiano dalembertiano 〈dalàm-〉 (o dalambertiano) [agg. Der. del cognome di J.-B. Le Rond detto d'Alembert] [ANM] L'operatore ∇2-v-2(ð2/ðt2), essendo ∇2 l'operatore laplaciano, v una costante e [...] t il tempo; è indicato con il simb. □; relativ. a una grandezza a in un riferimento cartesiano è □a=(ð2a/ðx2)+(ð2a/ðy2)+(ð2a/ðz2)-v-2(ð2a/ðt2)e il suo annullarsi significa che a si propaga per onde persistenti, ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

d'Alembert Jean-Baptiste Le Rond

Dizionario delle Scienze Fisiche (1996)

d'Alembert Jean-Baptiste Le Rond d'Alembert 〈d'alambèer〉 Jean-Baptiste Le Rond (in gioventù detto anche Dalembert o Daremberg) [STF] (Parigi 1717 - ivi 1783) Membro dell'Accademia di Francia dal 1754, [...] ondosa di una corda elastica: v. equazioni differenziali alle derivate parziali: II 438 d e onda: IV 234 e. ◆ [ANM] Operatore di d'A.: → dalembertiano. ◆ [MCF] Paradosso di d'A.: se un corpo si muove in un fluido perfetto o, più esattamente, se vi è ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA FONDAMENTALE DELL'ALGEBRA – EQUAZIONI DI LAGRANGE – ACCADEMIA DI FRANCIA – NUMERI COMPLESSI
Mostra altri risultati Nascondi altri risultati su d'Alembert Jean-Baptiste Le Rond (3)
Mostra Tutti

quadrato 1

Dizionario delle Scienze Fisiche (1996)

quadrato 1 quadrato1 [agg. Der. del part. pass. quadratus del lat. quadrare "rendere quadrato", da quadrus "quadrato"] [LSF] Che ha la forma di un quadrato geometrico o che in qualche modo si ricollega [...] realizzabile con punti disposti a formare un quadrato geometrico di lato contenente n punti (→ figurato). ◆ [ANM] Operatore q.: lo stesso che dalembertiano, così detto perché il suo simb. è | (si legge "quadrato"). ◆ [ALG] [ANM] Parentesi q.: hanno ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali