• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
lingua italiana
19 risultati
Tutti i risultati [46]
Matematica [19]
Fisica [14]
Analisi matematica [11]
Temi generali [9]
Fisica matematica [7]
Statistica e calcolo delle probabilita [6]
Algebra [6]
Storia della fisica [5]
Ingegneria [4]
Meccanica dei fluidi [4]

ellittico

Enciclopedia on line

Botanica Si dice di un organo (per es., una foglia) quando il suo contorno ha quasi esattamente la forma di un ellisse, ha cioè i due estremi arrotondati; oppure, meno propriamente, quando i due estremi [...] , che hanno la forma L f(x)=0 (➔ equazione). Un esempio di operatore e. che compare spesso in fisica è il Laplaciano ∇2= n∑i=1 ∂2−−−∂xi2 . Menzioniamo infine che la definizione di operatore e. può essere generalizzata per includere il caso in cui le ... Leggi Tutto
CATEGORIA: ANATOMIA MORFOLOGIA CITOLOGIA – TEMI GENERALI – FISICA MATEMATICA – ANALISI MATEMATICA
TAGS: OPERATORI DIFFERENZIALI – LUNGHEZZA DI UN ARCO – FUNZIONE ANALITICA – FUNZIONE RAZIONALE – FUNZIONI ABELIANE

NUMERI, Teoria dei

Enciclopedia Italiana - V Appendice (1993)

NUMERI, Teoria dei Luigi Accardi (App. IV, II, p. 626) Gli anni Ottanta hanno visto importanti progressi nella teoria dei numeri. In particolare le linee di tendenza, già emerse alla fine degli anni [...] kähleriana compatta (cioè la funzione ζΔ(s)=Σn λn−s, dove i λn-s sono gli autovalori del laplaciano ∂∂*+∂*∂, definito dall'operatore di Dolbeault ∂ su un fascio di forme differenziali sulla varietà). La dimostrazione di Vojta della congettura di ... Leggi Tutto
TAGS: GEOMETRIA ALGEBRICA – VARIETÀ KÄHLERIANA – NUMERI ALGEBRICI – PIANO PROIETTIVO – CURVA ALGEBRICA
Mostra altri risultati Nascondi altri risultati su NUMERI, Teoria dei (4)
Mostra Tutti

Geometria non commutativa

Enciclopedia del Novecento II Supplemento (1998)

Geometria non commutativa Irving E. Segal Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] in 0. D0 (z) è l'aggiunto di C0 (z), l'operazione di moltiplicazione a sinistra per z su C+, e C(z) è appropriatamente ∂0 = ∂/∂x0 (x0 indica il tempo e Δ il laplaciano sullo spazio) sono distribuzioni che soddisfano questa equazione, la cui norma ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA DEL CAMPO QUANTISTICO – ELETTRODINAMICA QUANTISTICA – OPERATORE LINEARE CONTINUO – TEORIA DELL'INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] di estrarre la radice quadrata di ds2 (com'è noto, Dirac determinò l'operatore che porta il suo nome quale radice quadrata differenziale di un laplaciano). Innanzitutto è necessario controllare che possiamo ancora misurare le distanze con l'unità di ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] del secondo ordine, detti ellittici, iperbolici e parabolici che sono, rispettivamente, generalizzazioni dell'operatore di Laplace, delle onde e del calore. Gli operatori ellittici sono definiti da polinomi quadratici che si annullano solo per ξ=0 ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Matematica: problemi aperti

Enciclopedia della Scienza e della Tecnica (2007)

Matematica: problemi aperti Claudio Procesi Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che [...] in presenza di una metrica di Riemann si possono costruire un'operazione sulle forme differenziali, comunemente indicata con il simbolo *, un operatore δ≡*d* e un operatore di Laplace intrinseco Δ≡dδ+δ. Infine mostrò che le forme armoniche, ovvero ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – INTERNATIONAL MATHEMATICAL UNION – METODO DI ELIMINAZIONE DI GAUSS – FUNZIONE DI VARIABILE COMPLESSA
Mostra altri risultati Nascondi altri risultati su Matematica: problemi aperti (14)
Mostra Tutti

Laplace Pierre-Simon de

Dizionario delle Scienze Fisiche (1996)

Laplace Pierre-Simon de Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] di una teoria adeguata relativa ai fenomeni in esame. ◆ [ANM] Trasformata di L.: v. oltre: Trasformazione di Laplace. ◆ [ANM] Trasformazione di L.: operazione che fa passare da una data funzione F(t) della variabile reale t, alla funzione f(s) della ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – ACCADEMIA DI FRANCIA – EQUAZIONI ELLITTICHE – FORZA GRAVITAZIONALE – CORRENTE ELETTRICA
Mostra altri risultati Nascondi altri risultati su Laplace Pierre-Simon de (4)
Mostra Tutti

OPERATORI; OPERAZIONALE, CALCOLO

Enciclopedia Italiana - IV Appendice (1979)

OPERATORI; OPERAZIONALE, CALCOLO (od operatorio, calcolo) Tullio Viola Riteniamo opportuno aggiungere alle considerazioni svolte nelle voci: operatori (App. III, 11, p. 317) e simbolico, calcolo (App. [...] particolari tecniche dell'Analisi matematica. Si pensi all'op. L di Laplace, che trasforma una generica funzione F = F(t) definita in teorema del punto unito, cioè: "se T(f) è un'operazione che trasforma un insieme compatto B in sé, e se esiste una ... Leggi Tutto

Hodge Sir William Vallance Douglas

Dizionario delle Scienze Fisiche (1996)

Hodge Sir William Vallance Douglas Hodge 〈hògë〉 Sir William Vallance Douglas [STF] (Edimburgo 1903 - Cambridge 1975) Prof. di matematica nell'univ. di Cambridge (1936). ◆ [ALG] Complesso e operatore [...] , e. ◆ [ALG] Dualità di H.: v. varietà riemanniane: VI 505 c. ◆ [PRB] Laplaciano di H.-De Rahm: v. geometria differenziale stocastica: III 39 c. ◆ [ALG] Operatore di H.: v. operatori, indici di: IV 300 e. ◆ [ALG] Teorema di H.: v. forme differenziali ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
1 2
Vocabolario
laplaciano
laplaciano agg. – Che si riferisce all’astronomo e matematico fr. P.-S. de Laplace ‹laplàs› (1749-1827). Ipotesi cosmogonica l. (o di Laplace), ipotesi per la quale si suppone che il Sole fosse originariamente un immenso globo gassoso, o nebula,...
operatóre
operatore operatóre s. m. [dal lat. tardo operator -oris]. – 1. (f. -trice) a. Chi opera, chi compie determinate azioni o operazioni, per lo più abitualmente. Raro in usi generici: o. del male; o. di incantesimi; o. d’inganni; e ant. con il...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali