• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
107 risultati
Tutti i risultati [352]
Matematica [107]
Fisica [92]
Temi generali [52]
Analisi matematica [44]
Fisica matematica [39]
Biologia [32]
Medicina [26]
Algebra [30]
Ingegneria [29]
Economia [26]

operatori compatti

Enciclopedia della Scienza e della Tecnica (2008)

operatori compatti Luca Tomassini Operatori lineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] la cui chiusura nella topologia indotta dal prodotto scalare è compatta. In uno spazio di Hilbert a dimensione finita ogni operatore lineare è compatto, poiché trasforma ogni insieme limitato in uno limitato e in un tale spazio la chiusura di ogni ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE COMPATTO – OPERATORE IDENTITÀ – ANALISI MATEMATICA – SPAZIO DI HILBERT – OPERATORE LINEARE

generatore di un semigruppo

Enciclopedia della Scienza e della Tecnica (2008)

generatore di un semigruppo Luca Tomassini Siano X uno spazio di Banach con norma ∣∣∙∣∣ e B(X) l’insieme degli operatori continui su di esso. Si dice semigruppo di operatori {T(t)∣t≥0} una famiglia [...] lineari dal teorema di Hille-Yosida. Più precisamente, T(t) ha un generatore A=A0 (in questo caso un operatore lineare) definito su un dominio denso in X il cui risolvente R(λ,A)=(A−I)−1 soddisfa le disuguaglianze [2] formula( ω=limt→∞ t−1ln ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: SPAZI VETTORIALI TOPOLOGICI – OPERATORI CONTINUI – OPERATORE LINEARE – SPAZIO DI BANACH – SPAZI VETTORIALI

OPERATORI

Enciclopedia Italiana - III Appendice (1961)

OPERATORI Fernando BERTOLINI . 1. Generalità. - Il termine o. indica d'ordinario il simbolo d'una operazione, o più in generale d'una applicazione univoca (v. applicazione, in questa App.); per una [...] quelli di Cramer e di Rouché. Un notevole risultato è il seguente: se A e B sono due spazî completi di Banach ed ω è un operatore lineare continuo da A in B univocamente invertibile (ossia è associato ad una applicazione biunivoca di A su B), anche l ... Leggi Tutto

PINCHERLE, Salvatore

Dizionario Biografico degli Italiani (2015)

PINCHERLE, Salvatore Enrico Rogora PINCHERLE, Salvatore. – Nacque a Trieste l’11 marzo 1853 da Mosè ed Evelina Dörfles. Di famiglia ebraica frequentò le scuole medie e il liceo Imperiale a Marsiglia, [...] in Acta Mathematica, X (1887), pp. 153-182), affrontò il problema generale dell’iniettività e della suriettività di un operatore lineare definito su uno spazio di funzioni e si rese conto per primo che, mentre nel caso finito dimensionale iniettività ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: CONSIGLIO NAZIONALE DELLE RICERCHE – SCUOLA NORMALE SUPERIORE DI PISA – EQUAZIONI DIFFERENZIALI LINEARI – CORRISPONDENZA BIUNIVOCA – EQUAZIONI DIFFERENZIALI
Mostra altri risultati Nascondi altri risultati su PINCHERLE, Salvatore (3)
Mostra Tutti

nucleo

Dizionario delle Scienze Fisiche (1996)

nucleo nùcleo [Der. del lat. nucleus "gheriglio della noce, nòcciolo di un frutto", da nux nucis "noce"] [LSF] La parte centrale di qualcosa, in quanto appaia più compatta del resto oppure venga considerata [...] : II 811 f. ◆ [ASF] N. di una nebulosa diffusa: la stella che eccita la nebulosa. ◆ [ALG] N. di una trasformazione lineare: dato un operatore lineare L su uno spazio vettoriale V, è l'insieme degli x∈V tali che Lx=0. ◆ [ANM] N. di un'equazione ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA QUANTISTICA – OTTICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA

normale

Dizionario delle Scienze Fisiche (1996)

normale normale [agg. Der. di norma] [LSF] Che segue la norma o una regola generale, anche nel senso di presentare caratteristiche medie (per es., obiettivo fotografico n. è quello che ha un angolo di [...] retta nel generico punto di questa (questa forma n. permette di calcolare immediatamente la distanza di un punto dalla retta). ◆ [ANM] Operatore n.: operatore lineare A definito su uno spazio di Hilbert tale che A∗A=AA∗, dove A∗ è l'aggiunto di A (v ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – METROLOGIA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA

secolare

Dizionario delle Scienze Fisiche (1996)

secolare secolare [agg. Der. del lat. saecularis, da saeculum "secolo"] [LSF] Di fenomeno che si svolga con una scala temporale estremamente grande e, se periodico, con un periodo dell'ordine di molti [...] di circa 260 secoli. ◆ [ALG] Equazione s.: l'equazione algebrica che permette di determinare gli autovalori di un operatore lineare e che interviene in numerose questioni di algebra, geometria e fisica, così denominata perché incontrata per la prima ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA

hermitiano

Dizionario delle Scienze Fisiche (1996)

hermitiano hermitiano [agg. e s. Der. del cognome di C. Hermite] (a) [ALG] [ANM] Qualifica di enti legati in qualche modo a forme h. e a matrici h. (v. oltre): metriche h., operatore h., prodotti h., [...] con B+, tramite la relazione (B+x,y)=(x,By), nel senso che se B+=B, B è un operatore hermitiano. ◆ [ANM] Operatore h., o hermitiano s.m.: operatore lineare definito in un sottoinsieme D(a) denso in uno spazio di Hilbert H, tale che per ogni x, y in ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

unitario

Dizionario delle Scienze Fisiche (1996)

unitario unitàrio [agg. Der. di unità] [LSF] Che è u-guale all'unità, si fonda sull'unità o s'ispira a criteri di unità. ◆ [CHF] Nella tecnologia chimica, di trasformazioni per le quali possono essere [...] quadrata A per la quale AA∗=A∗A=I, dove A∗ è la matrice coniugata trasposta di A e I è la matrice identità. ◆ [ANM] Operatore u.: operatore lineare A definito su uno spazio di Hilbert H tale che per ogni coppia a, b in H si ha (Aa, Ab)=(a, b). ◆ [ALG ... Leggi Tutto
CATEGORIA: TEMI GENERALI – FISICA MATEMATICA – METROLOGIA – ALGEBRA – ANALISI MATEMATICA

autospàzio

Dizionario delle Scienze Fisiche (1996)

autospazio autospàzio [Comp. di auto- e spazio] [ALG] Di un operatore lineare A definito su uno spazio vettoriale X, è un sottospazio A⊂X tale che se x∈A, allora Ax∈A; si usa anche dire, se λ è un autovalore [...] di A, che i vettori verificanti Ax=λx appartengono all'a. generato dall'autovalore λ. ◆ [MCC] A. instabile, neutro e stabile: v. sistemi dinamici: V 288 f ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA
TAGS: SPAZIO VETTORIALE – OPERATORE LINEARE – SISTEMI DINAMICI
Mostra altri risultati Nascondi altri risultati su autospàzio (4)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 11
Vocabolario
lineaménto
lineamento lineaménto s. m. [dal lat. lineamentum (der. di linea) «linea, riga» e al pl. «contorni, fattezze»]. – Non com., linea, soprattutto in quanto venga tracciata, o disposizione di linee; ant., modo di disegnare, in genere; nel linguaggio...
programmazióne
programmazione programmazióne s. f. [der. di programmare]. – 1. a. L’operazione, l’attività, il risultato del programmare: la p. dello studio, della ricerca (o di una ricerca), del lavoro, della produzione; la p. delle vacanze, del tempo libero;...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali