Il valore della lunghezza del contorno di figure piane aventi uno stesso perimetro; anche, il comune valore dell’area della superficie di solidi diversi. Problema degli isoperimetri (nel piano) Problema [...] , per il caso n=6) quello di area massima è il poligono regolare di n lati (fig. 1E); infine, tra tutte le figure piane isoperimetriche il cerchio ha la massima area (fig. 1F), tra tutti i solidi isoperimetrici la sfera ha il massimo volume; ecc. Dal ...
Leggi Tutto
Curva algebrica di ordine 3°. Le c. si distinguono in piane e gobbe. C. piana Ogni curva piana rappresentata in coordinate cartesiane da un’equazione c. in due variabili: f (x, y)=0, dove f (x, y) è un [...] in comune. Per ogni punto dello spazio passa una corda e una soltanto della c. gobba: la sua proiezione da un punto su un piano è perciò una c. dotata di punto doppio essendo la c. gobba razionale. Equazione cubica È l’equazione di 3° grado in una ...
Leggi Tutto
Insieme di linee, reali o ideali, che si intrecciano formando incroci e nodi e dando luogo a una struttura complessa. Più in particolare, infrastruttura tecnica per la distribuzione di un segnale (tipicamente [...] quali pertanto si incontrano, fuori di tali punti, in un solo punto variabile. Sono esempi di r. omaloidiche la totalità delle rette del piano (n = 1, n2−1 = 0, cioè nessun punto base), la totalità dei cerchi passanti per un dato punto A (n = 2, n2−1 ...
Leggi Tutto
rodonea
rodonèa [Lat. scient. rhodonea, dal gr. rhódon "rosa"] [ALG] Denomin. di curve piane, che si possono immaginare generate da un punto in moto armonico su un segmento di retta, di lunghezza R, [...] rotante uniformemente intorno al centro del moto armonico; la forma dipende (v. fig.) dal rapporto σ tra la pulsazione del moto armonico sulla retta e la velocità angolare del moto della retta, che compare ...
Leggi Tutto
In genere, qualsiasi cosa che avvolge strettamente.
Matematica
Inviluppo di una famiglia di curve piane È una curva L tale che per ogni suo punto P passi una e una sola curva della famiglia data avente [...] hanno vertici nei vari punti dell’asse di σ e sono circoscritti a tale superficie; in figura sono rappresentati due coni k, k′ e i piani tangenti a σ nei due punti P, P′. Se f(x, y, z, t)=0 è l’equazione delle superfici della famiglia (al variare del ...
Leggi Tutto
radioide
radiòide [Der. del lat. radius "raggio" con il suff. -oide] [ALG] Denomin. di curve piane che soddisfano a particolari condizioni imposte al raggio di curvatura, per es. che esso sia proporzionale [...] alla lunghezza dell'arco da un punto fisso (r. agli archi o clotoide) o a quella della corda da un punto fisso (r. alle corde o lemniscata di Bernoulli) o all'ascissa cartesiana (r. alle ascisse) ...
Leggi Tutto
planimetria
planimetrìa [Comp. di plani- e -metria] [ALG] Parte della geometria che studia le figure piane. ◆ [FTC] [ALG] Nel disegno tecnico, sinon. di pianta. ◆ [GFS] (a) Parte della topografia che [...] s'occupa della rappresentazione su un piano dei punti del terreno di una regione, con l'indicazione della quota (diretta oppure mediante curve di livello, ombreggiature, ecc.). (b) L'insieme delle caratteristiche altimetriche di una regione. ...
Leggi Tutto
faccia
fàccia [Der. del lat. facies "forma, aspetto, faccia"] [ALG] In genere, ognuna delle figure piane che delimitano una figura nello spazio: per es., ciascuno degli angoli piani che delimitano un [...] angoloide o ciascuno dei poligoni che delimitano un poliedro; in partic., f. laterali in una piramide i triangoli che convergono al vertice, in un prisma i parallelogrammi compresi fra spigoli laterali ...
Leggi Tutto
cubica
cùbica [s.f. dall'agg. cubico] [ALG] Curva algebrica del 3° ordine. Si distinguono in c. piane e c. gobbe (o spaziali). (a) Le c. piane sono rappresentate in coodinate cartesiane da un'equazione [...] a 5. Le due c. campaniformi (figg. 1 e 2) sono senza punto doppio e di classe 6 (per un punto del loro piano passano 6 rette, non tutte reali, tangenti alla curva), e sono dotate di 9 flessi, che formano una configurazione interessante: su ogni retta ...
Leggi Tutto
Matematico francese (Beaumont-de-Lomagne, Tarn-et-Garonne, 1601 - Castres 1665). Autore di studi sul calcolo delle aree di figure piane, sul calcolo delle probabilità in problemi di giochi d'azzardo e nel [...] calcolo delle probabilità in problemi di giochi d'azzardo e per alcune importanti ricerche sul calcolo delle aree di figure piane. Notevole è anche il suo contributo (1662) all'ottica geometrica, dato che per primo ricavò da un principio di minimo ...
Leggi Tutto
piana1
piana1 s. f. [femm. sostantivato dell’agg. piano1]. – 1. a. Terreno pianeggiante, pianura: un canto ... S’alzò da un olmo solo in una piana (Pascoli). Si usa spec. in particolari denominazioni (alcune con valore di toponimi): la p....