Scienza greco-romana. Diofanto di Alessandria
Roshdi Rashed
Diofanto di Alessandria
Nel corso degli ultimi decenni la nostra conoscenza dell’opera di Diofanto di Alessandria è cambiata in maniera considerevole, [...] a che non resta una sola specie da entrambe le parti».
Data questa nozione di «specie», sarebbe inesatto parlare di polinomio e di equazione polinomiale nell’Aritmetica, nel senso in cui la intendono gli algebristi, soprattutto a partire dal X sec ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] delle funzioni complesse. L'equazione differenziale del primo ordine
[10] F(z,w,w′)=0
dove w′=dw/dz e F è un polinomio in w e w′, ha alcune soluzioni; la soluzione generale dipende da un parametro arbitrario. Nel caso lineare la posizione dei punti ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni
Craig Fraser
Mario Miranda
Calcolo delle variazioni
Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] a ogni dato continuo.
Infatti, da un noto teorema di approssimazione di Weierstrass, per ogni funzione continua Φ:∂Ω→ℝ esiste una successione di polinomi {Pj} con limj max∂Ω∣Φ−Pj∣=0. Dette Vj le funzioni armoniche su Ω, eguali a Pj su ∂Ω, avremo che ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] delle equazioni algebriche è fondata unicamente e soltanto sull'esistenza di intervalli" a estremi razionali, in cui un opportuno polinomio a coefficienti interi cambia di segno (solo una volta). Tutto quello che serve nel calcolo, dice Kronecker, è ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] in occasione dei suoi studi sulla meccanica dei fluidi, ma si era limitato a considerare casi particolari in cui S è un polinomio. Va appunto a Laplace il merito di aver attirato l'attenzione dei matematici sull'equazione che oggi porta il suo nome e ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] Buchberger introduce la nozione di 'base di Gröbner' (che chiama così in onore del suo maestro) e di 'S-polinomio', insieme con un algoritmo per il calcolo esplicito di queste basi, che permettono la risoluzione di problemi della geometria algebrica ...
Leggi Tutto
La civilta islamica: condizioni materiali e intellettuali. Dal greco all'arabo: trasmissione e traduzione
Roshdi Rashed
Dal greco all'arabo: trasmissione e traduzione
Gli storici delle scienze e della [...] non c'è, per esempio, una settima potenza, né una quinta potenza negli enunciati dei problemi; insomma, la nozione di polinomio è del tutto assente. La composizione dell'opera di Diofanto è dunque chiara: si tratta di combinare tra loro delle specie ...
Leggi Tutto
polinomio
polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
grado1
grado1 s. m. [lat. gradus -us «passo, scalino», dallo stesso tema di gradi «camminare, avanzare»]. – 1. a. ant. Gradino, scalino: Scala drizzò di cento gradi e cento (T. Tasso). Più raram., passo: deh ferma un poco il g. (Boccaccio)....