• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
35 risultati
Tutti i risultati [142]
Algebra [35]
Matematica [66]
Fisica [23]
Fisica matematica [19]
Geometria [16]
Analisi matematica [15]
Temi generali [13]
Diritto [13]
Economia [9]
Storia della matematica [8]

ottetto

Enciclopedia on line

Complesso di 8 elementi o unità. chimica Regola dell’o. Regola introdotta nella chimica da I. Langmuir e basata sulla teoria del legame di G.N. Lewis, secondo la quale quando due atomi si combinano per [...] o numeri di Cayley) costituiscono un esempio di algebra A non commutativa e non associativa sul campo R dei numeri reali. Ogni x)=(x1)2+…+(x8)2, risulta N(xy)=N(x)N(y). Altra proprietà di A è di essere un’algebra con divisione: assegnati, cioè, due o ... Leggi Tutto
CATEGORIA: ASPETTI TECNICI – TEMI GENERALI – CHIMICA FISICA – FISICA MATEMATICA – FISICA NUCLEARE – ALGEBRA
TAGS: COMPOSTI DI COORDINAZIONE – PARTICELLE ELEMENTARI – PROPRIETÀ ASSOCIATIVA – SPAZIO VETTORIALE – NUMERI COMPLESSI

non commutativo

Enciclopedia on line

In matematica, si dice di struttura nella quale sia definita un’operazione che non è commutativa (➔ commutativa, proprietà). Tali strutture hanno assunto un ruolo importante nella caratterizzazione della [...] uno spazio funzionale di un’algebra si realizza dimostrando che le proprietà di un insieme di punti di uno spazio possono essere descritte mediante le proprietà di anelli commutativi di funzioni (anelli di funzioni C∞), definite sull’insieme di punti ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA
TAGS: PRINCIPIO DI INDETERMINAZIONE DI HEISENBERG – TEORIA DELLE RAPPRESENTAZIONI – TEORIA DELLE STRINGHE – FISICA QUANTISTICA – ANELLI COMMUTATIVI

vettoriale

Dizionario delle Scienze Fisiche (1996)

vettoriale vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] v₂)=kv₁+kv₂. Se K non è un campo (commutativo) ma un corpo (non necessariamente commutativo) è possibile definire in modo analogo uno spazio v. in K, che si indica con (v₁, v₂), e gode delle seguenti proprietà: (v₁, v₂)=(v₂, v₁); (k₁v₁+ k₂v₂,v₃)=k₁(v ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

algebre di von Neumann

Enciclopedia della Scienza e della Tecnica (2008)

algebre di von Neumann Luca Tomassini Un’algebra di von Neumann C è una sotto-algebra involutiva dell’algebra B(ℋ) degli operatori lineari limitati (ovvero continui) su uno spazio di Hilbert ℋ (con [...] in B(ℋ) che commutano con tutti gli elementi di S, il bicommutante è il commutante del commutante). Notiamo che dalle è conosciuta come teorema di von Neumann: essa lega proprietà topologiche (convergenza) e algebriche. È possibile dare una ... Leggi Tutto
CATEGORIA: ALGEBRA

C*-algebre

Enciclopedia della Scienza e della Tecnica (2008)

C*-algebre Luca Tomassini Un’algebra normata (o algebra di Banach A) è un’algebra sul corpo dei numeri complessi ℂ dotata di una norma ∣∣∙∣∣ che soddisfa la relazione ∣∣ab∣∣≤∣∣a∣∣∙∣∣b∣∣, dove a e b [...] meccanica quantistica. Le C*-algebre sono gli spazi non commutativi di principale (se non unico) interesse nella geometria non commutativa. Una C*-algebra A è caratterizzata dalle proprietà seguenti: (i) un’involuzione, ovvero un’applicazione a→a ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – MECCANICA QUANTISTICA – SPAZIO DI HILBERT – FUNZIONI CONTINUE – NUMERO COMPLESSO
Mostra altri risultati Nascondi altri risultati su C*-algebre (1)
Mostra Tutti
1 2 3 4
Vocabolario
commutativo
commutativo agg. [der. di commutare]. – 1. Che commuta o è relativo al commutare: giustizia c., che consiste nel rendere il corrispondente di quello che si riceve. In diritto, contratto c., quello in cui le prestazioni reciproche sono stabilite...
proprietà
proprieta proprietà (pop. propietà) s. f. [dal lat. propriĕtas -atis, der. di proprius «proprio»]. – 1. a. Qualità propria e particolare che un essere, un corpo, una sostanza (o anche una specie) ha per sua natura e per cui si distingue da...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali