FRISI, Paolo (al secolo Giuseppe)
Ugo Baldini
Secondogenito degli otto figli di Giovanni Mattia e di Francesca Magnetti, nacque a Melegnano, presso Milano, il 13 apr. 1728.
Il nonno paterno Antonio, [...] ). Il F. partì nell'aprile 1766 e, visitati Radicati, Gerdil e Lagrange, fu a Parigi dal 19 maggio. Le sue attività sono documentate dalla continuità tra scienza moderna e illuminismo. Puntadi lancia della polemica furono ancora gli ex ...
Leggi Tutto
Corrado Mencuccini
Elettricità
Energy and persistence conquer all things
(Benjamin Franklin)
Proposte per l’energia elettrica italiana
di
10 gennaio
La Commissione Europea vara un piano per la nuova politica [...] , e poi quella analoga delle azioni magnetiche. A questi sviluppi contribuì molto l’introduzione di una nozione, di cui si trovano i primi accenni nelle opere di J.-L. Lagrange (1777) e di P.-S. Laplace (1784), e che si precisò poi in quella che G ...
Leggi Tutto
potenziale
potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] definizione, in un dato punto, l'integrale di linea del vettore del campo dal puntodi riferimento A al punto P nei campi newtoniani e del 18° sec. e per gran parte del 19° sec., da G.L. Lagrange a P.S. Laplace, S.-D. Poisson, G. Green, K.F. Gauss ...
Leggi Tutto
principio variazionale
Daniele Cassani
Corrispondenza tra le soluzioni di un’assegnata equazione differenziale e i punti critici di un opportuno funzionale. I modelli della fisica matematica sono essenzialmente [...] , le soluzioni possono essere riguardate come punti stazionari di un opportuno funzionale associato al sistema, come equazioni di Euler-Lagrange relative al funzionale
dove U rappresenta l’energia potenziale del sistema. Per intervalli di tempo ( ...
Leggi Tutto
Achille
Achille [Nome di un eroe della mitologia greca] [ASF] Denomin. di uno dei cosiddetti pianetini greci (v. Sistema Solare: V 281 c), scoperto alla specola di Heidelberg nel 1906 sulla stessa orbita [...] , non la raggiungerà mai. Infatti, quando A. raggiunge il puntodi partenza della tartaruga, quest'ultima sarà giunta in un punto più avanzato; quando A. avrà raggiunto questo nuovo punto, la tartaruga avrà percorso un ulteriore tratto, e così via ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...