• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
il chiasmo
lingua italiana
84 risultati
Tutti i risultati [733]
Matematica [84]
Arti visive [88]
Biografie [82]
Fisica [69]
Diritto [57]
Temi generali [57]
Storia [44]
Filosofia [40]
Archeologia [39]
Letteratura [31]

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] Nirenberg nel 1982 per escludere, per esempio, tutta una retta di singolarità nello spazio-tempo. Stabilire se nelle equazioni di Navier-Stokes e di Euler tridimensionali vi siano punti singolari è ancora oggi uno dei maggiori problemi aperti. In due ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] i conti. Per offrire una descrizione veramente rigorosa della teoria dei punti singolari e delle curve su una superficie, che a suo avviso doveva essere il punto di partenza della disciplina, Zariski non soltanto si impadronì completamente dell ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

Computazionali, metodi

Enciclopedia della Scienza e della Tecnica (2007)

Computazionali, metodi Alfio Quarteroni I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] t=1. Il cambio di parametro rimuove la singolarità presente nella precedente rappresentazione delle radici in funzione di p e il calcolo del I metodi a più livelli sono ottimali dal punto di vista della complessità computazionale, in quanto per la ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMA DI EQUAZIONI, LINEARI – METODO DEGLI ELEMENTI FINITI

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri Günther Frei Teoria analitica dei numeri La teoria analitica dei numeri non è una teoria matematica ben definita, [...] è il metodo del cerchio: prendere archi del cerchio determinati da successioni di Farey e studiare il contributo delle singolarità dell'integrale di Cauchy dovute ai punti razionali del cerchio. Con un raffinamento del metodo del cerchio, Rademacher ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] 'unica superficie chiusa, compatta e orientabile sulla quale è possibile definire un flusso privo di singolarità, una sfera deve avere almeno un punto singolare (risultato detto familiarmente 'teorema della palla pelosa': una sfera non è 'pettinabile ... Leggi Tutto
CATEGORIA: GEOMETRIA

Leggi di scala

Enciclopedia della Scienza e della Tecnica (2007)

Leggi di scala Luciano Pietronero Le leggi di scala riguardano il comportamento di una struttura in funzione della scala da cui la si guarda. Per i sistemi regolari, sia matematici sia fisici e naturali, [...] singolarità isolate. Lo studio dei fenomeni critici e lo sviluppo della teoria del gruppo di dato dalla sequenza discreta delle operazioni, mentre nelle ordinate è riportato il punto di arrivo o, nel caso dei giocatori, quanto si è vinto o ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – INTERNET
TAGS: DISTRIBUZIONE DI PROBABILITÀ – TEOREMA DEL LIMITE CENTRALE – GRUPPO DI RINORMALIZZAZIONE – DISTRIBUZIONE DI POISSON – DISTRIBUZIONE GAUSSIANA

La seconda rivoluzione scientifica: matematica e logica. Algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Algebra Claudio Procesi Algebra Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] in modo assai ingegnoso per analizzare le nozioni di molteplicità, di rami di una singolarità, problemi riguardanti l'estensione di funzioni lungo le singolarità e così via. Il punto di vista globale ha ricevuto un impulso particolarmente fecondo ... Leggi Tutto
CATEGORIA: ALGEBRA

Invarianti, Teoria degli

Enciclopedia della Scienza e della Tecnica (2007)

Invarianti, Teoria degli Claudio Procesi La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] morfismo è costante sulle orbite ed è interessante determinare il legame preciso fra punti di V//G e le G-orbite in V. La teoria è stata sviluppata Boutot, il quale ha provato che le singolarità razionali si preservano per passaggio al quoziente. ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: DOMINIO A FATTORIZZAZIONE UNICA – TEORIA DELLE RAPPRESENTAZIONI – TEOREMA DI CAYLEY-HAMILTON – CORRISPONDENZA BIUNIVOCA – SEGNO DELLA PERMUTAZIONE
Mostra altri risultati Nascondi altri risultati su Invarianti, Teoria degli (6)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] in w e analitica in z) si indirizzò per questo motivo al problema della caratterizzazione di quelle equazioni con punti di ramificazione e punti singolari essenziali fissi. La classificazione conclusiva fu iniziata da Paul Painlevé (1863-1933) in una ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Calcolo geometrico

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo geometrico Paolo Freguglia Gert Schubring Calcolo geometrico Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] opposte: ne seguiva che se A, B e C sono punti di una retta, allora AB+BC=AC è sempre vera, sia che di nuovo la direzione, anche il parallelogramma come un prodotto di segmenti adiacenti e orientati. La novità e la singolarità di tale nozione di ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 9
Vocabolario
singolarità
singolarita singolarità (ant. singularità) s. f. [dal lat. tardo singularĭtas -atis, der. di singularis «singolare»]. – 1. ant. Qualità di ciò che concerne una singola persona; con valore concr., ciò che è individuale, che interessa un singolo...
tangènza
tangenza tangènza s. f. [der. di tangente1]. – Non com., il fatto di toccare; più spesso, l’essere tangente, l’avere cioè un punto di contatto con una curva, con un piano, con una superficie, ecc. In matematica, si dice che in un punto si...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali