• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
11 risultati
Tutti i risultati [39]
Matematica [11]
Fisica [11]
Fisica matematica [8]
Astronomia [7]
Meccanica [7]
Ingegneria [6]
Meccanica dei fluidi [6]
Biografie [5]
Temi generali [5]
Algebra [5]

lagrangiano

Dizionario delle Scienze Fisiche (1996)

lagrangiano lagrangiano [agg. Der. del cognome di G.L. Lagrange] [MCC] Qualifica delle grandezze descrittive della dinamica di un sistema materiale continuo quando sono riferite non al generico punto [...] [MCC] Meccanica analitica l.: v. meccanica classica: III 682 b. ◆ [MCC] Metodo l.: lo stesso che punto di vista lagrangiano. ◆ [ASF] Punti l.: i due punti di equilibrio di due corpi orbitanti con lo stesso periodo intorno a un terzo corpo più massivo ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA

Geometria

Enciclopedia Italiana - VI Appendice (2000)

Geometria Ryoichi Kobayashi e Luigi Ambrosio Giovanni Bellettini (XVI, p. 623; App. III, i, p. 724; IV, ii, p. 39; V, ii, p. 391) Numerose voci dell'Enciclopedia Italiana trattano i vari oggetti e [...] Ht(x)=HΓt(x)νΓt(x) è il vettore curvatura media di Γt in x. Al di là dell'approccio parametrico, di tipo lagrangiano, è anche utile adottare un punto di vista più intrinseco, di tipo euleriano. A tale scopo, è stato osservato che il m.c.m. può essere ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONE DIFFERENZIALE ORDINARIA – SCUOLA NORMALE SUPERIORE DI PISA – CARATTERISTICA DI EULERO – FUNZIONI DIFFERENZIABILI
Mostra altri risultati Nascondi altri risultati su Geometria (13)
Mostra Tutti

campo

Dizionario delle Scienze Fisiche (1996)

campo campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] campi, teoria classica dei: I 471 c. ◆ [MCQ] C. lagrangiano: v. meccanica stocastica: III 743 e. ◆ [MCQ] C. libero teorie si rivelano di solito inadeguate nelle vicinanze del punto critico, prevedendo singolarità diverse da quelle osservate; per ... Leggi Tutto
CATEGORIA: ACUSTICA – BIOFISICA – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su campo (2)
Mostra Tutti

PADULA, Fortunato

Dizionario Biografico degli Italiani (2014)

PADULA, Fortunato Romano Gatto PADULA, Fortunato. – Nacque a Napoli il 24 dicembre 1816 da Federico, ufficiale dell’esercito borbonico, e da Nicoletta Napoletano. Compì i suoi primi studi a Caserta, [...] e Salvatore de Angelis, una scuola a indirizzo analitico-lagrangiano in aperta rivalità con la ‘Scuola sintetica’ fondata quest’ultimo esibì una nuova dimostrazione analitica del massimo numero di punti doppi di una curva di grado m e mostrò alcune ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ACCADEMIA DELLE SCIENZE DI TORINO – REGNO DELLE DUE SICILIE – UNIVERSITÀ DI NAPOLI – ACCADEMIA DEI LINCEI – GEOMETRIA ALGEBRICA
Mostra altri risultati Nascondi altri risultati su PADULA, Fortunato (1)
Mostra Tutti

velocita

Dizionario delle Scienze Fisiche (1996)

velocita velocità [Der. del lat. velocitas -atis, da velox -ocis "veloce"] [LSF] Nell'accezione più generale, con rifer. a una grandezza variabile o a un fenomeno, il termine indica un elemento atto [...] [MCC] V. areale, o areolare: in un moto piano, di un punto rispetto a un polo, il vettore il cui modulo è pari alla derivata relativa al punto di vista lagrangiano, cioè quella della generica particella del sistema in moto, nei vari punti della sua ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ASTROFISICA E FISICA SPAZIALE – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su velocita (3)
Mostra Tutti

Lagrange Giuseppe Luigi

Dizionario delle Scienze Fisiche (1996)

Lagrange Giuseppe Luigi Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] di L.: v. meccanica analitica: III 660 b. ◆ [ANM] Polinomio d'interpolazione di L.: v. calcolo numerico: I 407 c. ◆ [ASF] Punti di L.: → lagrangiano. ◆ [ANM] Resto in forma di L.: v. sviluppi in serie: VI 63 c. ◆ [MCF] Teorema di L.: v. vortice: VI ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DIFFERENZIALE – ACCADEMIA DI BERLINO – INDICE DI RIFRAZIONE – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Lagrange Giuseppe Luigi (5)
Mostra Tutti

PROGRAMMAZIONE NON LINEARE

Enciclopedia Italiana - V Appendice (1994)

PROGRAMMAZIONE NON LINEARE Amato Herzel (App. IV, III, p. 70) Sia nel campo metodologico, sia in quello computazionale, si sono registrati negli ultimi tempi notevoli progressi. Ci si limiterà qui a [...] ben definiti come quelli che vengono qui presi in considerazione. Da un punto di vista generale, si può dire che nella p.n.l. ferve moltiplicatori u e y, si forma la funzione di Lagrange del problema: Differenziando rispetto a x, ponendo il gradiente ... Leggi Tutto
TAGS: PROGRAMMAZIONE LINEARE – TEORIA DEI GIOCHI – SERIE DI TAYLOR – PUNTI DI SELLA – LAGRANGIANA
Mostra altri risultati Nascondi altri risultati su PROGRAMMAZIONE NON LINEARE (2)
Mostra Tutti

La matematica

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

La matematica Luigi Pepe L’Italia è stata per cinque secoli al centro della ricerca e degli insegnamenti matematici. A partire dalla seconda metà del 12° sec., quando Gherardo da Cremona, Platone da [...] 3 volumi (La matematica in Italia, 2001, pp. 101-102). La teoria delle funzioni analitiche di Lagrange continuava a essere il punto di riferimento per il calcolo differenziale quando l’attaccamento legittimista alla dinastia dei Borboni condusse in ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – TEMI GENERALI

PIOLA DAVERIO, Gabrio

Dizionario Biografico degli Italiani (2015)

PIOLA DAVERIO, Gabrio Danilo Capecchi PIOLA DAVERIO, Gabrio. – Nacque a Milano il 15 luglio 1794 da Giuseppe Maria, patrizio e giureconsulto milanese, e da Angiola Casati, in una famiglia ricca e nobile. Venne [...] dei motivi per cui quest’ultimo tenne Piola come punto di riferimento tra gli scienziati italiani durante la sua sua metafisica è la medesima che si trova in Joseph-Louis Lagrange: tutta la meccanica può essere espressa per mezzo del calcolo ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: CALCOLO DELLE VARIAZIONI – TEORIA DELL’INTEGRAZIONE – JOSEPH-LOUIS LAGRANGE – BONAVENTURA CAVALIERI – MECCANICA LAGRANGIANA
Mostra altri risultati Nascondi altri risultati su PIOLA DAVERIO, Gabrio (1)
Mostra Tutti
1 2
Vocabolario
lagrangiano
lagrangiano agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali