Insieme delle scienze che studiano in modo ipotetico-deduttivo entità astratte come i numeri e le misure: la m. pura studia i problemi matematici indipendentemente dalla loro utilizzazione pratica; alla [...] rielaborati in proprio dalla m., non accettandosi più l’evidenza fisica come una dimostrazione matematica. I mutamenti metodologici nella m. pura contemporanea, per quanto profondi, hanno così radici chiaramente individuabili nel recente passato, con ...
Leggi Tutto
Ennio Peres
GIOCHI MATEMATICI
Con il termine matematica ricreativa si intende quel vasto insieme di questioni logico-matematiche che vengono affrontate per spirito ludico e puro piacere personale e non per la necessità di approfondire degli argomenti di studio o di risolvere casi concreti. Il materiale ... ...
Leggi Tutto
cinema e matematica Il matrimonio tra cinema e scienza è di quelli di lunga durata. Risale addirittura alla preistoria della settima arte, alle sperimentazioni fotografiche di P.J. Janssen, É.-J. Marey, E.J. Muybridge e alla tecnica pionieristica della cronofotografia, una sorta di antenata del cinema ... ...
Leggi Tutto
Laura Ziani
Settore della matematica che studia il comportamento dei sistemi dinamici (➔ anche statica). In essi l’evoluzione temporale è descritta da equazioni funzionali, la cui incognita è una funzione y(t), nelle quali il tempo gioca il ruolo della variabile indipendente (➔ indipendente, variabile). ... ...
Leggi Tutto
L’enorme sviluppo del sapere in campo matematico dall’antichità sino ai nostri giorni non consente più di accettare, per tale disciplina, la definizione di «scienza razionale dei numeri e delle misure», né di accogliere l’identificazione medioevale con le discipline del quadrivio (aritmetica; musica; ... ...
Leggi Tutto
Michiel Bertsch
Nei Paesi industrializzati (Cina e India comprese) la m. è generalmente considerata una delle scienze trainanti, ossia di importanza strategica per le società a forte base tecnologica. C'è da chiedersi allora perché in molti Paesi occidentali la m. soffre di un grave problema di immagine. ... ...
Leggi Tutto
Claudio Procesi
Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che a volte ci illuminano su quali possano essere gli sviluppi futuri di questa disciplina, nonostante proprio tale sguardo retrospettivo ... ...
Leggi Tutto
Walter Maraschini
Il regno dei numeri e delle figure, del calcolo e del ragionamento
La matematica è un sistema simbolico razionale e astratto che permette di orientarsi tra i problemi e di risolverli. Nata da esigenze concrete – contare, distribuire, scambiare merci – la matematica studia oggi numeri, ... ...
Leggi Tutto
Matematica
CCarla Frova
Tra le scienze oggetto dell'interesse di Federico II e coltivate presso la sua corte, la matematica occupa certamente uno spazio meno ampio di quello che ebbe la filosofia naturale. Costituisce tuttavia una componente non secondaria della cultura federiciana, in primo luogo ... ...
Leggi Tutto
Ana Millán Gasca
(XXII, p. 257; App. II, ii, p. 276; III, ii, p. 44; IV, ii, p. 414)
Nella voce matematica pubblicata nel vol. XXII della Enciclopedia Italiana, l'etimologia greca della parola introduce una stringata visione della storia della m. fino al 19° secolo, strettamente collegata a una riflessione ... ...
Leggi Tutto
matemàtica [Der. del lat. mathematica (ars), dal gr. mathematiké (téchne) "(arte) dei numeri"] [ALG] [ANM] Nata originar. come scienza dei numeri (aritmetica) e delle misure agrarie e poi delle misure di figure in genere (geometria), la m. si è sviluppata, dal Cinquecento, tramite l'uso della notazione ... ...
Leggi Tutto
(XXII, p. 547; App. II, 11, p. 276; III, 11, p. 44)
Francesco Giacomo Tricomi
Non è intento di quest'articolo di riferire analiticamente sui progressi realizzati nei vari rami della m. nell'ultimo quindicennio (per i quali si rinvia senz'altro alle voci dei singoli rami della m. in questa App.), bensì ... ...
Leggi Tutto
(XXII, p. 547 e App., II, 11, p. 276)
Francesco G. TRICOMI
Gli sviluppi più recenti della m. saranno qui presi in esame soprattutto nelle loro linee generali e nei loro mutui rapporti; per una più particolareggiata analisi dei progressi realizzati nei singoli rami più importanti rinviamo invece ad ... ...
Leggi Tutto
(XXII, p. 547)
Fabio Conforto
Valore ed essenza delle matematiche. - I più recenti studî sul valore e il significato delle matematiche tendono sempre più a vedere in questa disciplina null'altro che lo studio dei sistemi ipotetico-deduttivi di proposizioni, dei sistemi cioè costituiti dal complesso ... ...
Leggi Tutto
Federico Enriques
Matematica, o matematiche (gr. τὰ μαϑηματικά da μάϑημα "insegnamento") significa originariamente "disciplina" o "scienza razionale". Questo significato conferirono alla parola i filosofi della scuola italica, fondata da Pitagora (prima del 500 a. C.), che pose la scienza dei numeri ... ...
Leggi Tutto
Matematica
Definizioni
Si chiama e. un’uguaglianza tra due espressioni contenenti una o più variabili ovvero una o più funzioni o anche enti di natura più generale ( incognite dell’e.); se essa è soddisfatta, [...] 2, le soluzioni dell’e. in y sono: y1=u+v; y2=ϕu+ϕ2v; y3=ϕ2u+ϕv. La quantità q2/4+p3/27 è il ‘discriminante’ Δ dell’e.: se a, b, c, d (e quindi p essa interviene in importanti e classici problemi di fisica matematica. Sono integrali dell’e. di Bessel ...
Leggi Tutto
Nel linguaggio scientifico, in presenza di fenomeni casuali (o aleatori), p. di un evento è il numero, compreso fra 0 e 1, che esprime il grado di possibilità che l’evento si verifichi, intendendo che [...] la p. di un evento intesa come espressione di una proprietà fisica dell’evento stesso e delle condizioni in cui esso si verifica ( N(A∣C) tale numero; e) al crescere di N le quantità N(A∣C)/N (frequenze relative dell’evento A) tendono a stabilizzarsi ...
Leggi Tutto
Scienza che ha per oggetto lo studio dei fenomeni collettivi suscettibili di misura e di descrizione quantitativa: basandosi sulla raccolta di un grande numero di dati inerenti ai fenomeni in esame, e [...] intermedie o gentiliane, che tuttavia non hanno trovato applicazioni fisiche. Poiché, per il principio di indeterminazione, le minime indeterminazioni simultanee della posizione (Δx, Δy, Δz) e della quantità di moto (Δpx, Δpy, Δpz) di una particella ...
Leggi Tutto
Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. [...] . Cardano), la considerazione dei numeri complessi (‘quantità silvestri’) e le relative regole di calcolo dal lavoro di M.A. Virasoro, a opera di numerosi matematici e fisici.
Sistema ipercomplesso Sia dato un corpo numerico Γ (per es., l’insieme ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] è pensabile senza un corpo contenuto. A differenza di quanto accade nella concezione dello s. dei pitagorici e degli atomisti s. non soltanto come matematico ma anche come fisiologo, psicologo, fisico, e ne fa il punto focale di tutte le sue ricerche ...
Leggi Tutto
Astronomia
Secondo la definizione tradizionale, corpo celeste che brilla di luce propria, perché costituito di materia incandescente, a differenza di un pianeta che si limita a riflettere la luce ricevuta [...] un valore critico, noto come massa di Jeans (MJ). MJ è tanto più piccola quanto più fredda o densa è la nube; più precisamente si trova: MJ=[(2,5 gli ambienti nelle feste natalizie.
Fisica
Nella fisica nucleare, configurazione di tracce di ...
Leggi Tutto
Livello massimo, al di sopra o al di sotto del quale si verifica un fenomeno.
Fisica
Angolo limite
In ottica, nel passaggio di un raggio da un mezzo a un altro con indice di rifrazione assoluto inferiore [...] oltre la quale cessa un determinato fenomeno fisico, biologico, antropico. Tali l. si il fatto che quando il valore x si avvicina al valore x0, il valore f(x) si avvicina quanto si vuole al valore l. Per esprimere in simboli che il l. di f(x), per x ...
Leggi Tutto
Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato a percorrerlo, [...] rispetto a r, e si indica con formula,
la quantità
Essa rappresenta la d. della funzione di una variabile il funzionale definito dalla relazione
dove ϕ ∈ I è una generica funzione. In fisica teorica si usa la notazione ∂F(f)/ ∂f(ϕ)=ʃ∂F(f)/∂f( ...
Leggi Tutto
sistema Nell’ambito scientifico, qualsiasi oggetto di studio che, pur essendo costituito da diversi elementi reciprocamente interconnessi e interagenti tra loro e con l’ambiente esterno, reagisce o evolve [...] i punti principali oppure all’interno di tale segmento; nel primo caso si parla di fuochi reali, in quanto si tratta di punti fisicamente accessibili e per essi possono passare effettivamente raggi incidenti e raggi emergenti. Nella fig. 2A, che si ...
Leggi Tutto
quantita
quantità s. f. [dal lat. quantĭtas -atis, der. di quantus «quanto, quanto grande»]. – 1. a. La proprietà e la condizione per cui un singolo ente o elemento, concreto o astratto, o una massa, possono essere misurati, e quindi la loro...
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...