• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
9 risultati
Tutti i risultati [15]
Matematica [9]
Analisi matematica [5]
Algebra [3]
Storia della matematica [3]
Meccanica [2]
Fisica [2]
Temi generali [2]
Statistica e calcolo delle probabilita [2]
Fisica matematica [2]
Astrofisica e fisica spaziale [2]

ipergeometrica, serie

Enciclopedia on line

Nome dato da Eulero alla serie , dove a, b, c, z sono numeri complessi qualsivogliano (ma c è diverso da 0 e da un intero negativo). Essa converge assolutamente per | z | < 1. K.F. Gauss, che studiò [...] z]F′−abF=0, la quale ammette anche altre soluzioni, esprimibili però sempre mediante funzioni ipergeometriche. Casi particolari della serie i. sono la serie binomiale: (1+z)m=F(−m, 1, 1,−z), e la serie logaritmica: ln (1+z)=−F(0, 1, 1, −z). Quando il ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONI DIFFERENZIALI LINEARI – FUNZIONI IPERGEOMETRICHE – EQUAZIONE DIFFERENZIALE – CONVERGE ASSOLUTAMENTE – LIMITE, UNA FUNZIONE
Mostra altri risultati Nascondi altri risultati su ipergeometrica, serie (1)
Mostra Tutti

EQUAZIONI

Enciclopedia Italiana - VI Appendice (2000)

(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131). Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] una profonda relazione reciproca. Illustriamo la sua idea tramite un semplice esempio. La serie ipergeometrica F(a, b; c; t) è una soluzione dell'e. differenziale ipergeometrica dove a, b, c sono parametri complessi. D'altro lato, se consideriamo ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE – ACCADEMIA DELLE SCIENZE DI PARIGI – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONI ALLE DERIVATE PARZIALI – DISUGUAGLIANZA ISOPERIMETRICA
Mostra altri risultati Nascondi altri risultati su EQUAZIONI (9)
Mostra Tutti

Goursat, Édouard-Jean-Bap tiste

Enciclopedia on line

Matematico francese (Lanzac, Lot, 1858 - Parigi 1936). Dal 1897 prof. di analisi matematica all'univ. di Parigi. Dal 1918 socio straniero dei Lincei. Allievo, all'École normale supérieure, di Bouquet, [...] al 1900. Le ricerche del G. sulle funzioni di variabile complessa, sulle equazioni differenziali lineari, sulla serie ipergeometrica, sulla riduzione degli integrali abeliani, hanno rivelato un gran numero di fatti analitici nuovi. Il G. raccolse ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – EQUAZIONI DIFFERENZIALI – ANALISI INFINITESIMALE – SERIE IPERGEOMETRICA – PARIGI

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] 1], cioè le funzioni 'derivate' p,q,r,… erano proprio i coefficienti dello sviluppo in serie di Taylor di f(x), p=f′(x), q=f″(x)/2, r=f‴(x)/2 affrontato il problema della convergenza della serie ipergeometrica ottenuta da Euler come integrale di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali ordinarie

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali ordinarie Jeremy Gray Equazioni differenziali ordinarie Variabili reali Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] .g.): dove le costanti α, β, γ possono essere reali o complesse e le variabili possono essere entrambe reali o entrambe complesse. La serie di potenze: detta serie ipergeometrica (s.i.g.), rappresenta una delle sue soluzioni; nel caso in cui tale ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Gauss Karl Friedrich

Dizionario delle Scienze Fisiche (1996)

Gauss Karl Friedrich Gauss 〈gàus〉 Karl Friedrich [STF] (Brunswick 1777 - Gottinga 1855) Prof. di astronomia nell'univ. di Gottinga e direttore del locale Osservatorio astronomico (1807). ◆ [ALG] Applicazione [...] A.-Gauss. ◆ [ANM] Punti e formule di G.: v. calcolo numerico: I 408 d. ◆ [ANM] Serie di G.: lo stesso che serie ipergeometrica (→ ipergeometrico). ◆ [MTR] [EMG] Sistema di G.: il sistema di misura CGS simmetrico (sigla: CGSsim) dell'elettromagnetismo ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – METODO DEI MINIMI QUADRATI – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – SERIE IPERGEOMETRICA
Mostra altri risultati Nascondi altri risultati su Gauss Karl Friedrich (5)
Mostra Tutti

L'Ottocento: matematica. Immagini della matematica nell'Ottocento

Storia della Scienza (2003)

L'Ottocento: matematica. Immagini della matematica nell'Ottocento Umberto Bottazzini Immagini della matematica nell'Ottocento Il panorama della matematica negli ultimi decenni del XIX sec. è per molti [...] , pone le basi dell'analisi complessa, mostra un primo esempio di moderno rigore nello studio della serie ipergeometrica, introduce idee fondamentali nella teoria delle superfici che segnano la nascita della moderna geometria differenziale. Tuttavia ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

serie

Enciclopedia on line

Successione ordinata e continua di elementi, concreti e astratti, dello stesso genere. Ecologia Successione delle comunità che si sostituiscono l’una all’altra in una regione. Le comunità di transizione [...] ortonormale, si hanno convergenze di vario tipo della s. di Fourier generalizzata verso la f(x). S. ipergeometrica Per tale tipo di s. ➔ ipergeometrica, serie. S. di Laurent È una s. bilatera di potenze di coefficienti ck= 1−−−−2πi ∫C−−−−−f(s ... Leggi Tutto
CATEGORIA: ASPETTI TECNICI – TEMI GENERALI – BIOINGEGNERIA – ECOLOGIA – ECOLOGIA VEGETALE E FITOGEOGRAFIA – CRONOLOGIA GEOLOGICA – ANALISI MATEMATICA – GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA – ECOLOGIA ANIMALE E ZOOGEOGRAFIA – EDITORIA E ARTE DEL LIBRO – ATTIVITA ESERCIZI COMMERCIALI MERCATI – FILIERE STRUMENTI E TECNICHE DELLA PRODUZIONE INDUSTRIALE – INDUSTRIA GRAFICA – ELETTROTECNICA
TAGS: DISCONTINUITÀ DI PRIMA SPECIE – FUNZIONE DI VARIABILE REALE – LIMITE DELLA SUCCESSIONE – APPROSSIMAZIONE LINEARE – EQUAZIONI DIFFERENZIALI
Mostra altri risultati Nascondi altri risultati su serie (6)
Mostra Tutti

Jacobi Karl Gustav Jacob

Dizionario delle Scienze Fisiche (1996)

Jacobi Karl Gustav Jacob Jacobi 〈iakóbi〉 Karl Gustav Jacob [STF] (Potsdam 1805 - Berlino 1851) Prof. di matematica nell'univ. di Königsberg (1827). ◆ [MCC] Condizione di J.: v. moto, costanti del: IV [...] ]. Costituiscono una generalizzazione dei polinomi di Legendre e di Chebyscev (v. sviluppi in serie: VI 66 Tab. 7.1). Intervengono nella soluzione dell'equazione ipergeometrica. ◆ [MCC] Teorema di J. della meccanica: v. meccanica analitica: III 656 c ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA – ANALISI MATEMATICA
Vocabolario
ipergeomètrico
ipergeometrico ipergeomètrico agg. [comp. di iper- e geometrico] (pl. m. -ci). – In matematica, detto di una particolare serie che rappresenta un’estensione della serie geometrica in cui compaiono numeri complessi, e di un’equazione la cui...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali