• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
3 risultati
Tutti i risultati [15]
Storia della matematica [3]
Matematica [9]
Analisi matematica [5]
Algebra [3]
Meccanica [2]
Fisica [2]
Temi generali [2]
Statistica e calcolo delle probabilita [2]
Fisica matematica [2]
Astrofisica e fisica spaziale [2]

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] 1], cioè le funzioni 'derivate' p,q,r,… erano proprio i coefficienti dello sviluppo in serie di Taylor di f(x), p=f′(x), q=f″(x)/2, r=f‴(x)/2 affrontato il problema della convergenza della serie ipergeometrica ottenuta da Euler come integrale di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali ordinarie

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali ordinarie Jeremy Gray Equazioni differenziali ordinarie Variabili reali Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] .g.): dove le costanti α, β, γ possono essere reali o complesse e le variabili possono essere entrambe reali o entrambe complesse. La serie di potenze: detta serie ipergeometrica (s.i.g.), rappresenta una delle sue soluzioni; nel caso in cui tale ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Immagini della matematica nell'Ottocento

Storia della Scienza (2003)

L'Ottocento: matematica. Immagini della matematica nell'Ottocento Umberto Bottazzini Immagini della matematica nell'Ottocento Il panorama della matematica negli ultimi decenni del XIX sec. è per molti [...] , pone le basi dell'analisi complessa, mostra un primo esempio di moderno rigore nello studio della serie ipergeometrica, introduce idee fondamentali nella teoria delle superfici che segnano la nascita della moderna geometria differenziale. Tuttavia ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA
Vocabolario
ipergeomètrico
ipergeometrico ipergeomètrico agg. [comp. di iper- e geometrico] (pl. m. -ci). – In matematica, detto di una particolare serie che rappresenta un’estensione della serie geometrica in cui compaiono numeri complessi, e di un’equazione la cui...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali