• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
117 risultati
Tutti i risultati [117]
Matematica [56]
Algebra [25]
Analisi matematica [24]
Fisica [20]
Geometria [14]
Fisica matematica [14]
Temi generali [12]
Meccanica quantistica [11]
Meccanica [8]
Statistica e calcolo delle probabilita [8]

sottospazio

Enciclopedia on line

sottospazio In geometria, con riferimento a un dato spazio S, si dice s. di S uno spazio subordinato a S (➔ spazio). ... Leggi Tutto
CATEGORIA: GEOMETRIA

sottospazio

Enciclopedia della Matematica (2013)

sottospazio sottospazio sottoinsieme E di uno → spazio S, dotato della stessa struttura algebrica e topologica di S, cioè tale che risulti a sua volta uno spazio della stessa natura di S. Tra i sottospazi [...] da una combinazione lineare dei vettori v1, v2, ..., vk. L’insieme di tali vettori è detto base del sottospazio. In uno spazio vettoriale Vn, i sottospazi di dimensione n − 1 sono detti → iperpiani e sono rappresentati da equazioni del tipo a0 + a1x1 ... Leggi Tutto
TAGS: LINEARMENTE INDIPENDENTI – COMBINAZIONE LINEARE – STRUTTURA ALGEBRICA – SPAZIO VETTORIALE – SPAZIO EUCLIDEO

sottospazio

Dizionario delle Scienze Fisiche (1996)

sottospazio sottospàzio [Comp. di sotto- e spazio] [ALG] Ogni sottoinsieme di uno spazio che mantenga la struttura e le proprietà di questo. ◆ [ALG] S. i-osculatore: v. curve e superfici: II 76 e. ... Leggi Tutto
CATEGORIA: ALGEBRA

sottospazio ortogonale

Enciclopedia della Matematica (2013)

sottospazio ortogonale sottospazio ortogonale in algebra lineare, dati uno spazio vettoriale V su un campo K dotato di prodotto scalare, qui indicato con 〈 , 〉, e un suo sottoinsieme S, è il sottoinsieme [...] tutti i vettori di V ortogonali ai vettori w di S, tali cioè che ∀v ∈ V, 〈w, v〉 = 0, che si dimostra essere un sottospazio di V. Due sottospazi U e W di V si dicono ortogonali se U ⊆ V ⊥ (e allora, per la simmetria del prodotto scalare, è anche V ⊆ U ... Leggi Tutto
TAGS: SPAZIO VETTORIALE – PRODOTTO SCALARE – ALGEBRA LINEARE – SOTTOINSIEME – SIMMETRIA

sottospazio vettoriale

Enciclopedia della Matematica (2013)

sottospazio vettoriale sottospazio vettoriale → sottospazio. ... Leggi Tutto

sottospazio, complemento di un

Enciclopedia della Matematica (2013)

sottospazio, complemento di un sottospazio, complemento di un → complemento; → somma diretta. ... Leggi Tutto
TAGS: SOMMA DIRETTA

sottospazio, complemento ortogonale di un

Enciclopedia della Matematica (2013)

sottospazio, complemento ortogonale di un sottospazio, complemento ortogonale di un → complemento; → somma diretta. ... Leggi Tutto
TAGS: SOMMA DIRETTA

annullatore

Enciclopedia della Matematica (2013)

annullatore annullatore particolare sottospazio costituito da funzionali che si annullano in relazione a un sottospazio di un dato spazio vettoriale. Più precisamente, se W è un sottospazio di uno spazio [...] vettoriale V, l’annullatore di W in V, indicato con il simbolo Ann(W), è il sottospazio vettoriale dello spazio duale V* di V costituito dai funzionali lineari e continui ƒ che si annullano su W: Se V ha dimensione finita, allora V* è isomorfo allo ... Leggi Tutto
TAGS: SPAZIO VETTORIALE QUOZIENTE – SOTTOSPAZIO VETTORIALE – FUNZIONE ARITMETICA – ELEMENTO ASSORBENTE – FUNZIONALI LINEARI

autospàzio

Dizionario delle Scienze Fisiche (1996)

autospazio autospàzio [Comp. di auto- e spazio] [ALG] Di un operatore lineare A definito su uno spazio vettoriale X, è un sottospazio A⊂X tale che se x∈A, allora Ax∈A; si usa anche dire, se λ è un autovalore [...] di A, che i vettori verificanti Ax=λx appartengono all'a. generato dall'autovalore λ. ◆ [MCC] A. instabile, neutro e stabile: v. sistemi dinamici: V 288 f ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA
TAGS: SPAZIO VETTORIALE – OPERATORE LINEARE – SISTEMI DINAMICI
Mostra altri risultati Nascondi altri risultati su autospàzio (4)
Mostra Tutti

codimensione

Enciclopedia della Matematica (2013)

codimensione codimensione relativamente a un sottospazio S di uno spazio E, è la differenza tra la dimensione dello spazio E e la dimensione del sottospazio S: codS = dimE − dimS. In modo equivalente [...] retta r in uno spazio euclideo E3, di dimensione tre (spazio ordinario), è 2. La definizione data è applicabile a un sottospazio U di uno spazio V di dimensione finita qualsiasi e di natura qualsiasi (spazio vettoriale, spazio affine ecc.). Così, per ... Leggi Tutto
TAGS: RELAZIONE DI EQUIVALENZA – SPAZIO VETTORIALE – SPAZIO QUOZIENTE – SPAZIO EUCLIDEO – PIANO EUCLIDEO
1 2 3 4 5 6 7 8 ... 12
Vocabolario
sottospàzio
sottospazio sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
suppleménto
supplemento suppleménto (ant. o raro suppliménto) s. m. [dal lat. supplementum, der. di supplere: v. supplire]. – 1. Ciò che serve a supplire, a sostituire una cosa mancante: quel rimbombo ... delle varie campane ... pareva, per dir così,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali