• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
36 risultati
Tutti i risultati [69]
Matematica [36]
Analisi matematica [19]
Algebra [18]
Fisica [14]
Geometria [11]
Fisica matematica [10]
Meccanica quantistica [10]
Temi generali [7]
Meccanica [8]
Meccanica dei fluidi [7]

L'Ottocento: matematica. Geometria superiore

Storia della Scienza (2003)

L'Ottocento: matematica. Geometria superiore David E. Rowe Geometria superiore Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] anni Ottanta, ma la teoria assiomatica astratta degli spazi vettoriali si sarebbe affermata solo molto più tardi intorno al 1920 P5. In tale iperspazio esteso, Klein considerò il sottospazio dei complessi lineari speciali, che si ottiene quando tutte ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – GEOMETRIA – STORIA DELLA MATEMATICA

potenza

Dizionario delle Scienze Fisiche (1996)

potenza potènza [Der. del lat. potentia, dall'agg. potens -entis "potente", part. pres. di posse "potere"] [LSF] (a) Generic., capacità di produrre grandi effetti. (b) Specific., l'energia che viene [...] fibrato: v. fibrato: II 571 a. ◆ [ALG] P. esterna di uno spazio vettoriale: in un'algebra di Grassmann definita su uno spazio vettoriale V, la r-esima p. di V è il sottospazio dell'algebra generato dal prodotto di r elementi della base di V. ◆ [MCF ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
TAGS: INSIEME DEI NUMERI NATURALI – CORRISPONDENZA BIUNIVOCA – CALCOLATORE ELETTRONICO – FUSIONE TERMONUCLEARE – POTENZA DI UN INSIEME
Mostra altri risultati Nascondi altri risultati su potenza (1)
Mostra Tutti

somma diretta

Enciclopedia della Scienza e della Tecnica (2008)

somma diretta Luca Tomassini Sia {Aα,α∈I} una famiglia di insiemi indicizzata dall’insieme I e sia πΑ∈I Aα il prodotto diretto (o cartesiano) dei suoi elementi Aα. Un elemento di πΑ∈I Aα è allora un’applicazione [...] )=xα. Supponiamo ora che ciascuno degli insiemi Aα sia uno spazio vettoriale (per es. un’algebra). La somma diretta (algebrica) ∑Α è allora definita come quel sottoinsieme (di fatto un sottospazio) del prodotto cartesiano πΑ∈I Aα consistente di quelle ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE – ELEMENTO NEUTRO – ALGEBRA
Mostra altri risultati Nascondi altri risultati su somma diretta (1)
Mostra Tutti

nullita

Dizionario delle Scienze Fisiche (1996)

nullita nullità [Der. del lat. nullitas -atis, da nullus "nessuno"] [LSF] L'essere nullo; raro nel signif. di annullarsi. ◆ [ALG] N. di una trasformazione lineare: è la dimensionalità del nucleo (←) [...] pensa come matrice di una trasformazione lineare T tra uno spazio vettoriale V e uno spazio vettoriale W, l'uno e l'altro di dimensione n, la n. di A rappresenta la dimensione del sottospazio di V ai vettori del quale corrisponde il vettore nullo di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA

rappresentazione irriducibile

Enciclopedia della Scienza e della Tecnica (2008)

rappresentazione irriducibile Gilberto Bini Rappresentazione lineare di un gruppo G, vale a dire un omomorfismo ϱ di G nel gruppo degli endomorfismi invertibili di uno spazio vettoriale V. Tale omomorfismo [...] induce un’azione di G sugli elementi di V data da g∙v=ϱ(g)v. Una sottorappresentazione di G è un sottospazio di V che viene mandato in sé nell’azione di G. Una rappresentazione di G si dice irriducibile se non esiste alcuna sottorapresentazione di G ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

codimensione

Dizionario delle Scienze Fisiche (1996)

codimensione codimensióne [Comp. di co- e dimensione] [ALG] Per un sottospazio U, di dimensione k, di uno spazio vettoriale V con dimensione n>k, è la differenza n-k: v. trasversalità: VI 337 d. ◆ [...] [PRB] C. di una catastrofe: v. catastrofi, teoria delle : I 526 f ... Leggi Tutto
CATEGORIA: ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
1 2 3 4
Vocabolario
sottospàzio
sottospazio sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
suppleménto
supplemento suppleménto (ant. o raro suppliménto) s. m. [dal lat. supplementum, der. di supplere: v. supplire]. – 1. Ciò che serve a supplire, a sostituire una cosa mancante: quel rimbombo ... delle varie campane ... pareva, per dir così,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali