spazioduale
Luca Tomassini
Dato uno spaziovettoriale reale (o complesso) X si definisce il suo duale Y come lo spaziovettoriale reale (o complesso) costituito dai funzionali lineari su X, ovvero [...] vettoriale topologico (dotato della topologia localmente convessa τ), Y è lo spazio di tutti i funzionali lineari continui su X (rispetto alla topologia τ) e (x,x′)=x′(x) per x∈X e x′∈Y. In questo caso si dice che Y è lo spazioduale topologico ...
Leggi Tutto
spaziospàzio [Der. del lat. spatium, probab. da patere "essere aperto"] [FAF] Con signif. intuitivo astratto e assoluto, il luogo illimitato in cui tutti gli oggetti materiali appaiono collocati, di [...] . di curvatura costante: v. varietà riemanniane: VI 504 a. ◆ [ANM] S. duale: v. funzionale, analisi: II 769 d. ◆ [ALG] S. euclideo: → euclideo vettoriale: Spaziovettoriale. ◆ S. vettoriale euclideo: v. tensore: VI 123 f. ◆ [ALG] S. vettoriale ...
Leggi Tutto
dualeduale [agg. e s.m. Der. del lat. dualis, da duo "due"] [LSF] Di ente che sia in relazione di dualità (←) con un altro. ◆ [ANM] D. di un gruppo abeliano: v. algebre di operatori: I 94 d. ◆ [ALG] [...] fibrati: II 571 a. ◆ [ALG] Rappresentazione d. di un gruppo: v. gruppi, rappresentazione dei: III 122 b. ◆ [ALG] Spazio d.: di uno spaziovettoriale V, è l'insieme dei funzionali lineari su V. ◆ [ALG] Tensore d.: v. tensore: VI 128 d. ◆ [FSN] Teoria ...
Leggi Tutto
vettorialevettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] V∗, detto lo spazioduale di V; se V ha dimensione finita n anche V∗ ha la stessa dimensione n. Uno spazio v. può essere dotato di strutture o proprietà addizionali che ne particolarizzano la collocazione tra tutti gli spazivettoriali. Una proprietà ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] anche L può essere pensata come una mappa dallo spazio delle fasi nel duale di un'algebra di Lie. La differenza è C² è quadrimensionale come spaziovettoriale su R). La velocità di fase del flusso di Hopf è un campo vettoriale che fa corrispondere al ...
Leggi Tutto
Algebra
Irving Kaplansky
sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] . Un modo di descriverla può essere il seguente: siano V e W due spazivettoriali di dimensione 3 su un dato corpo F, e sia C l'insieme di un modulo iniettivo, è notevolmente più difficile del suo duale proiettivo, in base al quale ogni modulo è ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] di Hahn-Banach nel quadro del problema della separazione degli insiemi convessi. La definizione di spazivettoriali topologici in dualità autorizza il linguaggio delle topologie deboli e degli insiemi polari; si dimostra il teorema dei bipolari ...
Leggi Tutto
Equazioni funzionali
JJacques Louis Lions
di Jacques Louis Lions
Equazioni funzionali
sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] vettoriale topologico che sia ‛sufficientemente grande', in modo che ogni suo elemento sia una funzione derivabile quante volte si voglia, in un senso opportuno.
Per questo si utilizza la dualità. Si introduce uno spazio ‛molto piccolo': lo spazio ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] si può caratterizzare nel modo seguente: si scelgono k coppie di spazivettoriali di dimensione finita Ui,Vi con i=1,…,k. Si considerano Feynman e in particolare dal modello di risonanza duale di Veneziano.
La teoria è stata notevolmente arricchita ...
Leggi Tutto
reticolo
retìcolo [Der. del lat. reticulum o reticulus, dim. di rete] [LSF] Sinon. di rete e di reticolato, usato in alcune espressioni tecniche per indicare una struttura che abbia aspetto di rete bi- [...] citate ottenendo un altro teorema T' anch'esso valido, detto teorema duale di T. Esempi di r. sono: (a) nell'aritmetica, geometria, i sottospazi di uno spaziovettoriale (incluso l'insieme vuoto e l'intero spazio) costituiscono un r. quando ...
Leggi Tutto