• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
75 risultati
Tutti i risultati [323]
Matematica [75]
Fisica [42]
Letteratura [27]
Analisi matematica [28]
Biografie [25]
Fisica matematica [24]
Algebra [26]
Temi generali [23]
Geometria [13]
Storia della matematica [14]

metrica riemanniana

Enciclopedia della Scienza e della Tecnica (2008)

metrica riemanniana Luca Tomassini Un tensore g di rango 2 definito su una varietà differenziabile n-dimensionale che sia covariante, ­simmetrico e definito positivo. In ogni spazio tangente TπMν nel [...] la più piccola delle lunghezze delle curve regolari a tratti con estremi p,q. Con questa distanza la varietà Mν diviene uno spazio metrico. Due varietà riemanniane Mν1 e Mν2 si dicono isometriche se esiste un mappa ϕ:Mν1→Mν2 tale che Una curva che ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: VARIETÀ DIFFERENZIABILE – GEOMETRIA DIFFERENZIALE – SPAZIO VETTORIALE – PRODOTTO SCALARE – CAMPO TENSORIALE
Mostra altri risultati Nascondi altri risultati su metrica riemanniana (1)
Mostra Tutti

norma

Enciclopedia della Scienza e della Tecnica (2008)

norma Luca Tomassini Sia X uno spazio vettoriale. Un’applicazione ∣∣∙∣∣:X→ℝ si dice una norma se verifica i seguenti assiomi: (a) ∣∣x∣∣≥0, per ogni x∈X; ∣∣x∣∣=0 se e soltanto se x=0; (b) ∣∣λx∣∣=∣λ∣·∣∣x∣∣, [...] ) tramite la formula d(x1, x2) = ∣∣x1−x2∣∣ x1, x2∈X e dunque uno spazio normato è uno spazio metrico. Non è vero viceversa. Il concetto di distanza è infatti, da un lato, più generale in quanto essa può essere definita anche in assenza di una ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su norma (6)
Mostra Tutti

OPERATORI

Enciclopedia Italiana - III Appendice (1961)

OPERATORI Fernando BERTOLINI . 1. Generalità. - Il termine o. indica d'ordinario il simbolo d'una operazione, o più in generale d'una applicazione univoca (v. applicazione, in questa App.); per una [...] distanza tra i vettori a′ e a″ la quantità ∥ a′ − a″ ∥, lo spazio di Banach stesso risulta uno spazio metrico (Γ è il corpo reale od il corpo complesso); III) in uno spazio di Hilbert è definita una operazione di prodotto scalare 〈a′, a″> tra due ... Leggi Tutto

SPAZI ASTRATTI

Enciclopedia Italiana - II Appendice (1949)

SPAZI ASTRATTI Sandro FAEDO . L'analisi matematica classica studia le proprietà delle funzioni di una o più variabili numeriche. Tali funzioni sono determinate dai valori assunti dalla variabile x in [...] x ??? y, d (x, y) = d (y, x), d (x, y) ≤ d (x, z) + d (z, y), z essendo un qualsiasi altro elemento di I. Negli spazî metrici per ogni elemento x e ogni numero positivo δ sono definiti gli elementi che sono vicini ad x per meno di δ, cioè tutti gli ... Leggi Tutto

La seconda rivoluzione scientifica: matematica e logica. L'analisi numerica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. L'analisi numerica Paolo Zellini L'analisi numerica L'analisi numerica moderna comincia a delinearsi verso la metà del XX sec., con le prime [...] variables (1970), risulta il caso particolare di una iterazione xi+1=Gxi, dove G è un operatore che associa elementi di uno spazio metrico X a elementi dello stesso spazio. Se con ∥x−y∥ si indica la distanza tra due elementi x e y di X e se ∥Gx−Gy∥≤λ ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

applicazióne

Dizionario delle Scienze Fisiche (1996)

applicazione applicazióne [Der. del lat. applicatio -onis "atto ed effetto dell'applicare", dal part. pass. applicatus di applicare: (→ applicabile)] [ALG] Si dice che f è un'a. di un insieme P in un [...] un aperto di A' tutto contenuto in I'. ◆ [ALG] A. definita e semidefinita, positiva e negativa: un'a. di uno spazio metrico M in R si dice definita positiva (negativa) se assume valori positivi (negativi) su ogni elemento di M, annullandosi solo sull ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA – MECCANICA APPLICATA

punto fisso

Enciclopedia della Scienza e della Tecnica (2008)

punto fisso Luca Tomassini Un punto x di un insieme X tale che F(x)=x per una determinata mappa F:X→X, ovvero di X in sé. Un tale punto si dirà anche punto fisso per F. La dimostrazione dell’esistenza [...] semplice, ma non per questo meno importante, tra i teoremi di punto fisso è il cosiddetto principio delle contrazioni. Siano X uno spazio metrico completo con metrica ϱ e F:X→X un operatore (detto contrazione) tale che ϱ(F(x),F(y))≤qϱ(x,y) con 0〈q ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – PROBLEMA DI CAUCHY – SPAZIO METRICO – MATEMATICI
Mostra altri risultati Nascondi altri risultati su punto fisso (2)
Mostra Tutti

unitario

Dizionario delle Scienze Fisiche (1996)

unitario unitàrio [agg. Der. di unità] [LSF] Che è u-guale all'unità, si fonda sull'unità o s'ispira a criteri di unità. ◆ [CHF] Nella tecnologia chimica, di trasformazioni per le quali possono essere [...] Rappresentazione u.: di un gruppo di trasformazioni, è una rappresentazione del gruppo tramite operatori unitari. ◆ [ALG] Sfera u.: (a) dato uno spazio metrico M con distanza d, la sfera unitaria di centro x è l'insieme dei punti y∈M tali che d(x, y ... Leggi Tutto
CATEGORIA: TEMI GENERALI – FISICA MATEMATICA – METROLOGIA – ALGEBRA – ANALISI MATEMATICA

compatto

Dizionario delle Scienze Fisiche (1996)

compatto compatto [Der. del part. pass. compactus del lat. compingere "unire strettamente" e quindi "fitto, denso, poco ingombrante"] [ALG] Gruppo c.: gruppo topologico, che sia c. come spazio topologico [...] qualunque (v. oltre). ◆ [ANM] Operatore c.: quello che applica tutti gli insiemi limitati di uno spazio metrico in insiemi compatti del medesimo spazio: v. equazioni integrali: II 477 f. Gli operatori c. sono assai importanti nella fisica perché per ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su compatto (2)
Mostra Tutti

completo

Dizionario delle Scienze Fisiche (1996)

completo complèto [agg. Der. del part. pass. completus del lat. complere "compiere sino alla fine" e quindi "che ha tutte le sue parti, intero"] [ALG] [ANM] Di ente non contenuto in altro ente più ampio; [...] ortogonale a tutti gli elementi del sistema è l'elemento nullo; v. anche equazioni integrali: II 479 e. ◆ [ANM] Spazio c.: uno spazio metrico nel quale ogni successione di punti che soddisfi la condizione di Cauchy è convergente verso un punto dello ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
1 2 3 4 5 6 7 8
Vocabolario
mètrico
metrico mètrico agg. [dal lat. metrĭcus, gr. μετρικός, der. di μέτρον «misura; metro (del verso)»] (pl. m. -ci). – 1. a. In relazione a metro nel sign. di «misura», che concerne la misura, la misurazione: i sistemi m. e monetarî usati dagli...
mètrica
metrica mètrica s. f. [femm. sostantivato dell’agg. metrico; nel sign. 1, cfr. gr. μετρική (sottint. τέχνη «arte»)]. – 1. La tecnica della versificazione, cioè il complesso delle leggi che regolano la composizione dei versi e delle strofe;...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali