La Rivoluzione scientifica: i domini della conoscenza. La sintesi newtoniana
Maurizio Mamiani
La sintesi newtoniana
Le opere maggiori di Newton
Isaac Newton rese pubbliche due sole opere, destinate [...] punto di un'ellisse con quelle di un cerchio tangente quel punto e di uguale curvatura, una tecnica poi cose sono situate nel tempo rispetto all'ordine di successione, nello spazio rispetto all'ordine della posizione. è proprio della loro essenza di ...
Leggi Tutto
Scienza greco-romana. Archimede
Reviel Netz
Archimede
Archimede è l’unico dei matematici greci di cui abbiamo notizie storiche; questa eccezionalità è dovuta in parte ai risultati da lui ottenuti, [...] sfera è un oggetto bidimensionale che si trova immerso in uno spazio a tre dimensioni e in nessun punto è planare. Il fatto Per esempio, nella prop. 5, dato un cerchio e una retta tangente a esso, si mostra come trovare un segmento di retta KZ tale ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria
Emily Grosholz
La rivoluzione cartesiana e gli sviluppi della geometria
La rivoluzione [...] assi.
La Géométrie cartesiana, invece, dedica molto spazio (specialmente nei Libri I e III) alla costruzione dato che la normale è la curva perpendicolare alla tangente, come determinare la tangente stessa. Il Libro III, quindi, tratta della ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] olomorfo TV. Se z1,…,zs sono coordinate locali olomorfe intorno a un punto p di V, allora lo spazio TV,p, tangente olomorfo a V in p, ha come base le derivazioni
e al variare di p descrive il fibrato TV.
Si ritorni alla formula [25]. Alla luce ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] la distanza tra due punti in termini delle loro coordinate nello spazio; se ne può dedurre che questo modo di esprimere la distanza del parallelo di latitudine e il seno dell'angolo tra la tangente alla curva e il meridiano è in ogni punto costante. ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] di tali funzioni f e g, continue in un punto x0∈U, si dicono tangenti in quel punto se risulta f(x0)=g(x0) e se il rapporto ∥f( punto λ≠0 di Sp(U).
Nel caso in cui E è uno spazio di Hilbert, ogni operatore continuo U in E è dotato di un operatore ...
Leggi Tutto
Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] M, definito come la proiezione di ∇f(x) sul piano tangente a M in x, si ha
[18] formula.
Possiamo allora distribuzioni, in L2(Ω) e si annullano al bordo di Ω. H è uno spazio di Hilbert rispetto al prodotto scalare (u∣v)=∫Ω∇u∙∇vdx. Inoltre è noto ...
Leggi Tutto
Computazionali, metodi
Alfio Quarteroni
I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] u (scalare o vettoriale) dipendente dal tempo e dallo spazio tale che ogni x=(x1,..., xd)∈Ω e t componenti ni esterno a Γ (ovvero il vettore di modulo unitario perpendicolare al piano tangente a Γ nel punto x). Infine, f(u) è una funzione vettoriale, ...
Leggi Tutto
La civilta islamica: osservazioni, calcolo e modelli in astronomia. Geografia matematica e cartografia
Edward S. Kennedy
Geografia matematica e cartografia
Lo storico delle scienze esatte dell'Islam [...] al metodo utilizzato. L'idea era di scegliere uno spazio piano adatto nel deserto siriaco e osservare φ a partire rotolare la sfera sopra la carta a partire da una posizione iniziale tangente in A′, in direzione di P, finché P diventa il punto ...
Leggi Tutto
Equazioni differenziali: problemi non lineari
Jean Mawhin
La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] h∈C0,α(Ω_).
Similmente, se p>1 e Wk,p(Ω) denota lo spazio di Sobolev delle funzioni reali u con derivate deboli fino all'ordine k appartenenti a Lp(Ω . Se u denota l'angolo tra l'asse e la tangente del bastone, λ la pressione e T la lunghezza del ...
Leggi Tutto
derivata
s. f. [da derivato, part. pass. di derivare1]. – Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato...
tangenziale
agg. [der. di tangenza]. – Genericam., che è tangente, o che ha comunque relazione con una retta tangente, con un piano o con un altro ente geometrico tangente. In partic.: 1. In geometria piana, coordinate t. (o coordinate di...