La civilta islamica: antiche e nuove tradizioni in matematica. Le tradizioni sulle coniche...
Roshdi Rashed
Philippe Abgrall
Le tradizioni sulle coniche e l'inizio delle ricerche sulle proiezioni
A [...] piccolo di AFC e AIE di GDE. In entrambi i casi, se AJ è la tangente in A al cerchio di diametro AB, AJ è parallelo a DE e si ha lo strumento. Rimprovera ad al-Farġānī di dare poco spazio alla teoria e troppo alla costruzione pratica, ma anche ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Trigonometria
Marie-Thérèse Debarnot
Trigonometria
Dalla geometria alla trigonometria
La trigonometria, scienza ausiliaria dello studio [...] '(ossia di formule ottenibili mediante una figura nello spazio o un analemma), poiché le numerose varianti proposte quest'ultimo. Si assiste anche in quel periodo al rifiuto del teorema delle tangenti di Abū 'l-Wafā᾽ da parte di al-Ḫuǧandī e di Kūšyār ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] G) e la rappresentazione gv=Segno(g)v, in cui G agisce sullo spazio vettoriale (a una dimensione) generato dal vettore v; il segno di una la curva h=0 passa per l'origine, ove ha una tangente in comune con le curve f e g. Per esprimersi con ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] in n(n−1) punti. Le rette condotte da questi punti a P sono tangenti alla curva. Se però la curva ha punti doppi e cuspidi, la polare ha dimensione m−p+1+r, dove r è la dimensione dello spazio delle 1-forme che si annullano in qualcuno o in tutti i ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] ’errata ipotesi che la velocità sia proporzionale allo spazio percorso e a sostituirla con quella esatta della alla quantità della linea BD come k a m. Se ora si traccia la tangente BE in B, la lunghezza ED alla DA sarà come la unghezza FB alla BG ...
Leggi Tutto
Scienza greco-romana. La geometria da Apollonio a Eutocio
Reviel Netz
La geometria da Apollonio a Eutocio
Il periodo di formazione del canone geometrico greco si estende dal 200 a.C. al 550 d.C., come [...] di Archimede poggia sulle relazioni tra un’iperbole e una parabola tangenti tra loro. In un punto della dimostrazione si fa vedere siamo soffermati su alcune opere isolate, nel tempo e nello spazio ma anche nel contenuto, e il cui solo contesto comune ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La sintesi newtoniana
Maurizio Mamiani
La sintesi newtoniana
Le opere maggiori di Newton
Isaac Newton rese pubbliche due sole opere, destinate [...] punto di un'ellisse con quelle di un cerchio tangente quel punto e di uguale curvatura, una tecnica poi cose sono situate nel tempo rispetto all'ordine di successione, nello spazio rispetto all'ordine della posizione. è proprio della loro essenza di ...
Leggi Tutto
Scienza greco-romana. Archimede
Reviel Netz
Archimede
Archimede è l’unico dei matematici greci di cui abbiamo notizie storiche; questa eccezionalità è dovuta in parte ai risultati da lui ottenuti, [...] sfera è un oggetto bidimensionale che si trova immerso in uno spazio a tre dimensioni e in nessun punto è planare. Il fatto Per esempio, nella prop. 5, dato un cerchio e una retta tangente a esso, si mostra come trovare un segmento di retta KZ tale ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria
Emily Grosholz
La rivoluzione cartesiana e gli sviluppi della geometria
La rivoluzione [...] assi.
La Géométrie cartesiana, invece, dedica molto spazio (specialmente nei Libri I e III) alla costruzione dato che la normale è la curva perpendicolare alla tangente, come determinare la tangente stessa. Il Libro III, quindi, tratta della ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] la distanza tra due punti in termini delle loro coordinate nello spazio; se ne può dedurre che questo modo di esprimere la distanza del parallelo di latitudine e il seno dell'angolo tra la tangente alla curva e il meridiano è in ogni punto costante. ...
Leggi Tutto
derivata
s. f. [da derivato, part. pass. di derivare1]. – Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato...
tangenziale
agg. [der. di tangenza]. – Genericam., che è tangente, o che ha comunque relazione con una retta tangente, con un piano o con un altro ente geometrico tangente. In partic.: 1. In geometria piana, coordinate t. (o coordinate di...