• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
7 risultati
Tutti i risultati [34]
Fisica matematica [7]
Matematica [16]
Fisica [12]
Geometria [6]
Relativita e gravitazione [7]
Storia della fisica [6]
Analisi matematica [5]
Algebra [5]
Meccanica [4]
Meccanica quantistica [4]

Christoffel Elwin Bruno

Dizionario delle Scienze Fisiche (1996)

Christoffel Elwin Bruno Christoffel 〈krìstofël〉 Elwin Bruno [STF] (Montjoie, Renania, 1829 - Strasburgo 1900) Prof. di analisi algebrica e infinitesimale nelle univ. di Zurigo (1862), Berlino (1869), [...] formule di quadratura approssimata. ◆ [ANM] Simboli di C.: coefficienti che intervengono nella definizione di derivata covariante, tramite la quale si definisce il differenziale in uno spazio curvo: v. tensore: VI 124 d. ◆ [ANM] Tensore di Riemann-C ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: STRASBURGO – BERLINO – TENSORE – ZURIGO
Mostra altri risultati Nascondi altri risultati su Christoffel Elwin Bruno (3)
Mostra Tutti

riemanniano

Dizionario delle Scienze Fisiche (1996)

riemanniano riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] alla forma pitagorica è data dall'annullarsi del tensore di Riemann (←); questo permette di calcolare certe "curvature", che sono tutte nulle nel caso di uno spazio euclideo, mentre in generale danno una misura di quanto la varietà r. e la relativa ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – EPISTEMOLOGIA – METAFISICA

Riemann Bernhard

Dizionario delle Scienze Fisiche (1996)

Riemann Bernhard Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] V 2 a. ◆ [ALG] Superficie ellittica e iperellittica di R.: v. Riemann, superfici di: V 3 a. ◆ [RGR] Tensore di curvatura di R.: lo stesso che tensore di R.-Christoffel (v. oltre). ◆ [RGR] Tensore di R.: tensore del quarto ordine che si associa a una ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: METRICA RIEMANNIANA – VARIETÀ COMPLESSA – MATEMATICA – GOTTINGA – FIBRATI
Mostra altri risultati Nascondi altri risultati su Riemann Bernhard (5)
Mostra Tutti

Fisica matematica

Enciclopedia del Novecento (1977)

Fisica matematica EEugene P. Wigner di Eugene P. Wigner Fisica matematica sommario: 1. Introduzione. 2. Il ruolo della matematica nella fisica. a) Uno schema dei concetti fondamentali della fisica. [...] come l'osservabile fondamentale. L'integrale invariante, la cui variazione egli pone uguale a zero, contiene il tensore di curvatura di Riemann R, cioè un'espressione assai complicata funzione delle gik e delle loro derivate rispetto alle xi che però ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – EQUAZIONI ALLE DERIVATE PARZIALI – TENSORE DI CURVATURA DI RIEMANN – TEORIA DELLE RAPPRESENTAZIONI – SPAZIO DELLE CONFIGURAZIONI
Mostra altri risultati Nascondi altri risultati su Fisica matematica (3)
Mostra Tutti

Cauchy Augustin-Louis

Dizionario delle Scienze Fisiche (1996)

Cauchy Augustin-Louis Cauchy ⟨koshì⟩ Augustin-Louis  (Parigi 1789 - Sceaux, Seine, 1857) Ingegnere, poi (1815) prof. nella Ècole Polytechnique, alla Sorbona e al Collège de France; non accettando il [...] v. elasticità, teoria dell’: II 252 e. ◆ Tensore di C.-Green: v. elasticità, teoria dell’: II 253 e. ◆ Teorema di C.-Liouville: v. funzioni di variabile complessa: II 778 f. ◆ Teorema di decomposizione polare di C.: v. meccanica dei continui: III 688 ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: DISTRIBUZIONE DI PROBABILITÀ – EQUAZIONE DIFFERENZIALE – DENSITÀ DI PROBABILITÀ – INDICE DI RIFRAZIONE – ÈCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Cauchy Augustin-Louis (3)
Mostra Tutti

prodotto

Dizionario delle Scienze Fisiche (1996)

prodotto prodótto [Part. pass. sostantivato di produrre, der. del lat. producere "portare avanti", comp. di pro- "davanti" e ducere "condurre"] [LSF] Generic., il risultato di qualcosa, spec. di un'attività, [...] di notevole importanza (per es., la funzione gamma di Eulero e la funzione zeta di Riemann) sono esprimibili come p. infinito: v. funzioni di di funzioni: v. meccanica quantistica: III 709 d. ◆ [ALG] P. tensoriale: → tensore. ◆ [ALG] P. tensoriale di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

varieta

Dizionario delle Scienze Fisiche (1996)

varieta varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] coordinate grassmanniane. ◆ [MCC] V. integrale: v. meccanica analitica: III 653 e. ◆ [ALG] V. jacobiana: v. Riemann, superfici di: V 6 a. ◆ [ANM] V. lineare: è un sottoinsieme di uno spazio lineare V della forma x₀+L, dove x₀ è un generico elemento ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su varieta (6)
Mostra Tutti
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali