INTEGRALE ARMONICO
Mario BENEDICTY
Le forme armoniche e i loro i. sono ampie generalizzazioni delle fuuzioni armoniche, come sono intese nella teoria classica delle funzioni; queste, com'è ben noto, [...] duale, o aggiunta di H (fornita dalla formula data sopra) si intende la (n − p)-forma H* i cui coefficienti sono dati dal tensore
ove gjk è definito dalla condizione gjk gki = δji e Det gij = g. (II) H soddisfa l'equazione generalizzata di Laplace ΔH ...
Leggi Tutto
fisica G. fisica Qualsiasi ente suscettibile di una precisa definizione quantitativa, quindi di misurazione, che viene introdotto allo scopo di consentire una descrizione quantitativamente precisa di fenomeni [...] es., una massa di 10 kg, un lavoro di 7 J ecc.); g. tensoriale ogni g. fisica che si rappresenta mediante un tensore (➔); g. vettoriale ogni g. per la cui determinazione occorre assegnare la sua misura rispetto a una data unità e inoltre indicarne la ...
Leggi Tutto
PASTORI, Maria
Angelo Guerraggio
PASTORI, Maria. – Nacque a Milano il 10 marzo 1895, terzogenita di una famiglia di modeste condizioni sociali: il padre, Silvio, era custode presso un istituto religioso; [...] , ibid., s. 7, 1941, n. 3, pp. 1-14; Calcolo tensoriale e applicazioni (con B. Finzi), Bologna 1949; Sul tensore fondamentale nell’ultima teoria di Einstein, in Atti del quarto Congresso dell’Unione matematica Italiana...1951, Roma 1953, pp. 537-541 ...
Leggi Tutto
dielettrico
dielèttrico [agg. e s.m. Comp. di dia- ed elettrico "permeabile all'elettricità"] [EMG] (a) Come agg., qualifica che si dà a grandezze (costante d., rigidità d., ecc.) e a fenomeni (corrente [...] quantifica la polarizzazione d. e la parte immaginaria quantifica l'assorbimento di energia del campo polarizzante; nei d. lineari è un tensore di secondo rango, simmetrico, che si riduce a una funzione scalare del posto se il d. è anche isotropo e a ...
Leggi Tutto
Maxwell James Clerk
Maxwell 〈mèksuël〉 James Clerk [STF] (Edimburgo 1831 - Cambridge 1879) Prof. di filosofia naturale (cioè di fisica) nel Marishal College di Aberdeen (1856), poi di astronomia nel King's [...] sforzi di M.: v. elettrodinamica classica: II 287 c. ◆ [EMG] [RGR] Tensore elettromagnetico di M.: il tensore Fμν che descrive il campo elettromagnetico: v. relatività generale, soluzioni delle: IV 797 a. ◆ [MCC] Teorema di M.: (a) lo spostamento ...
Leggi Tutto
deformazione
deformazióne [Der. del lat. deformatio -onis, dal part. pass. deformatus di deformare "perdere la forma", comp. di de- e di forma] [ALG] In uno spazio topologico, trasformazione Tt(s) tra [...] b. ◆ [RGR] Parametro di d.: v. relatività generale, soluzioni della: IV 804 c. ◆ [MCC] Tensore di d.: v. elasticità, teoria dell': II 252 b. ◆ [MCC] Tensore velocità di d.: v. meccanica dei continui: III 689 b. ◆ [MCC] Teoria infinitesima della d ...
Leggi Tutto
traccia
tràccia [Effetto del tracciare, der. del lat. tractiare "tirare una linea", dal part. pass. tractus di trahere "tirare"] [LSF] (a) La traiettoria di un corpo, in partic. una particella, quale [...] con il piano di riferimento. ◆ [ANM] T. di un operatore: la somma degli elementi diagonali della matrice associata all'operatore: v. algebre di operatori: I 98 e. ◆ [ALG] T. di un tensore: la contrazione degli indici in alto con gli indici in basso. ...
Leggi Tutto
Reynolds Osborne
Reynolds 〈rènolds〉 Osborne [STF] (Belfast 1842 - Watchett 1912) Prof. di scienza tecnica nell'Owens College di Manchester (1868). ◆ [FTC] [MCF] Condizione di R. ed equazione bidimensionale [...] Sforzo di R.: v. strato limite planetario dell'atmosfera terrestre: V 676 e. ◆ [MCF] Tensore degli sforzi di R.: nello studio della turbolenza, tensore le cui componenti rappresentano la quantità di moto trasferita, attraverso i piani coordinati, nel ...
Leggi Tutto
semplice
sémplice [agg. Der. del lat. simplex -icis, comp. delle radici sem- "uno solo" e plec- di plectere "allacciare", plicare "piegare", ecc.] [LSF] Che è costituito di un solo elemento e non può [...] altri, infinità doppia, ecc.); per es., costituiscono un sistema s. e un'infinità s. le tangenti a una curva e le componenti di un vettore (costituiscono invece un sistema doppio le componenti di un tensore di rango 2, un sistema triplo quelle di un ...
Leggi Tutto
Kronecker Leopold
Kronecker 〈króonekër〉 Leopold [STF] (Liegnitz 1823 - Berlino 1891) Prof. di matematica nell'univ. di Berlino (1883); socio straniero dei Lincei (1883). ◆ [ANM] [INF] Algoritmo di K.: [...] una permutazione di classe pari (o di classe dispari) degli indici distinti inferiori, vale 0 in tutti gli altri casi. ◆ [RGR] Tensore di K.: v. relatività generale: IV 787 e. ◆ [ALG] Teorema di K.: (a) dato un numero finito di forme algebriche in ...
Leggi Tutto
tensore1
tensóre1 agg. e s. m. [der. del lat. tensus, part. pass. di tendĕre «tendere»]. – In anatomia, di muscolo volontario o involontario che ha la funzione di tendere un organo o una formazione anatomica (muscolo t., o assol. tensore come...
tensore2
tensóre2 s. m. [lo stesso etimo di tensóre1]. – 1. In matematica, termine col quale inizialmente si è indicato il modulo di un vettore, successivamente passato a significare una generalizzazione del concetto di vettore, adatta per...