LAGRANGE, Giuseppe Luigi (Joseph Louis)
Luigi Pepe
Nacque a Torino il 25 genn. 1736 da Giuseppe Francesco Lodovico e Teresa Gros, primogenito di undici figli.
La famiglia era originaria della regione [...] equazioni algebriche, per esempio la famosa dimostrazione di P. Ruffini dell'impossibilità di risolvere per radicali le T. Borgato - L. Pepe, Una memoria inedita di L. sulla teoriadelle parallele, ibid., VIII (1988), 2, pp. 307-335. Le lezioni ...
Leggi Tutto
Il matematico delle equazioni di grado superiore
Il medico e matematico italiano Paolo Ruffini, vissuto tra Settecento e Ottocento, deve la propria fama ai risultati raggiunti in campo algebrico. Ha scoperto [...] famoso è relativo alle equazioni algebriche ed è contenuto nel trattato Teoriadelle equazioni, pubblicato nel 1799.
Quale numero moltiplicato per 2 e di equazioni di grado maggiore e la dimostrazione che in effetti questi procedimenti di validità ...
Leggi Tutto
Scienza indiana: periodo classico. La scienza islamica in India
Mario Casari
Fabrizio Speziale
La scienza islamica in India
Contorni della scienza indo-islamica
di Mario Casari
Nel II millennio dell'era [...] perché il reperimento librario dimostra una diffusa presenza di testi della scuola dell'osservatorio di Marāġa, la prima descrizione di un rinoceronte avrebbe in seguito suscitato numerose teorie, tra cui quella che si trattasse di un incrocio tra ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] parte, Cauchy continuò a produrre una grande quantità di risultati essenziali per lo sviluppo successivo dellateoriadelle funzioni di variabile complessa. Egli dimostrò la sua formula integrale per le funzioni con poli di ordine finito e la applicò ...
Leggi Tutto
Vicino Oriente antico. La matematica
Jöran Friberg
La matematica
Gli esercizi metro-matematici nel III millennio
La ricerca sulla matematica mesopotamica conobbe il suo periodo pionieristico a partire [...] prospettiva, varie parti degli Elementi di Euclide si possono considerare tentativi di dimostrare come una parte consistente dell'algebra delle misure, della geometria e dellateoria dei numeri babilonesi potesse rientrare nel quadro non numerico ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi
Marouane Ben Miled
La tradizione araba del Libro X degli Elementi
La storia delle letture [...] dato luogo a due opposte linee di ricerca. Da un lato Ṯābit ibn Qurra fondò la teoriadelle equazioni di secondo grado sulle dimostrazioni geometriche; dall'altro si sviluppò una corrente di ricerca che puntava alla traduzione dei problemi geometrici ...
Leggi Tutto
Scienza greco-romana. Archimede
Reviel Netz
Archimede
Archimede è l’unico dei matematici greci di cui abbiamo notizie storiche; questa eccezionalità è dovuta in parte ai risultati da lui ottenuti, [...] ; esso si basa su proposizioni dellateoriadelle sezioni coniche molto più specifiche di quelle usate in altre opere e anche su risultati di carattere particolare come il seguente, enunciato senza dimostrazione nell’introduzione:
Se sono date ...
Leggi Tutto
Econometria
Edmond Malinvaud
Introduzione
L'econometria è oggi una branca della scienza economica; ma per conoscerla a fondo bisogna tener presente che a suo tempo essa fu anche un movimento che propugnava [...] ci sono noti in modo immediato", "la validità di una teoria particolare è una questione di dimostrazione logica a partire dalle ipotesi adottate" e quindi l'economia è una branca della logica, un modo di pensare.
Una tale concezione, di cui ...
Leggi Tutto
La grande scienza. Automi e linguaggi formali
Dominique Perrin
Automi e linguaggi formali
La teoria degli automi e dei linguaggi formali ha lo scopo di descrivere le proprietà delle successioni di simboli. [...] . Ovviamente P⊂NP; è ragionevole supporre che P≠NP, ma ciò non è stato ancora dimostrato, e anzi costituisce uno dei problemi centrali dellateoria computazionale. Per citare una classe definita da restrizioni sullo spazio, la classe PSPAZIO è la ...
Leggi Tutto
Programmazione lineare
Robert Dorfman
di Robert Dorfman
Programmazione lineare
Introduzione
La programmazione lineare è una famiglia di metodi matematici per individuare i modi più redditizi o in [...] della dualità, senza addentrarci nei particolari tecnici della sua dimostrazione e delle sue proprietà formali.
Alcune conseguenze delle definizioni della dinamici, la cosiddetta teoria del controllo ottimale. Tale teoria, introdotta nel 1962 da ...
Leggi Tutto
dimostrazione
dimostrazióne s. f. [dal lat. demonstratio -onis]. – 1. a. Ogni atto, fatto, comportamento, parola o discorso che mostra o dimostra o rivela qualche c0sa, che cioè rende o con cui si rende manifesto, conosciuto, chiaro o certo...
pull factor (pull-factor) loc. s.le m. Secondo alcune interpretazioni politiche, l’insieme dei fattori economici, politici e sociali che attrarrebbero la migrazione verso Paesi in condizioni sociali, economiche, politiche, ambientali più favorevoli...