• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
81 risultati
Tutti i risultati [180]
Matematica [81]
Fisica [39]
Algebra [28]
Geometria [20]
Fisica matematica [22]
Temi generali [19]
Biologia [22]
Analisi matematica [20]
Storia della matematica [16]
Informatica [14]

fibrato vettoriale

Enciclopedia della Scienza e della Tecnica (2008)

fibrato vettoriale Luca Tomassini Un fibrato {B,X,F,τ} con spazio totale B, spazio di base X e proiezione canonica τ:B→X è detto fibrato vettoriale se: (a) la fibra tipica X è uno spazio vettoriale [...] relativa (come sottoinsieme di B) coincide con la sua topologia come spazio vettoriale; (b) ogni banalizzazione locale φα:τ−1(x)⊂B→ semplice esempio di fibrato complesso con base X è il prodotto cartesiano B=X×ℂ{[ (detto fibrato banale) e a partire ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: CORRISPONDENZA BIUNIVOCA – GEOMETRIA DIFFERENZIALE – APPLICAZIONE LINEARE – PRODOTTO CARTESIANO – SPAZIO VETTORIALE

operatori compatti

Enciclopedia della Scienza e della Tecnica (2008)

operatori compatti Luca Tomassini Operatori lineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] si dice compatto o completamente continuo se trasforma ogni insieme limitato in un insieme la cui chiusura nella topologia indotta dal prodotto scalare è compatta. In uno spazio di Hilbert a dimensione finita ogni operatore lineare è compatto, poiché ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE COMPATTO – OPERATORE IDENTITÀ – ANALISI MATEMATICA – SPAZIO DI HILBERT – OPERATORE LINEARE

Tichonov, Andrej Nikolaevič

Enciclopedia on line

Tichonov, Andrej Nikolaevič Matematico (Gzatsk, od. Gagarin, 1906 - m. 1993). Prof. all'univ. di Mosca (dal 1936), membro corrispondente (1939-66) e poi membro dell'Accademia delle scienze dell'URSS, premio Lenin (1966). Si occupò [...] costituiscono un'importante generalizzazione degli spazî normali. Un risultato fondamentale e ormai classico di T. è poi che il prodotto topologico di un numero qualunque di spazî compatti è uno spazio compatto (teorema di T.). Di grande rilievo sono ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: EQUAZIONI DIFFERENZIALI – ANALISI FUNZIONALE – FISICA MATEMATICA – SPAZIO COMPATTO – MOSCA
Mostra altri risultati Nascondi altri risultati su Tichonov, Andrej Nikolaevič (2)
Mostra Tutti

funtore

Enciclopedia on line

In matematica, trasformazione di una categoria C in un’altra categoria D, definita da una coppia di ‘funzioni’, ϕ e ψ, tali che: a) se A, B, ... indicano ‘oggetti’ di C, ϕ(A), ϕ(B) ... sono ‘oggetti’ ben [...] . In algebra, e soprattutto in algebra omologica, sono fondamentali i f. che derivano dal prodotto tensoriale e dalla dualizzazione. Infine la topologia algebrica, con la costruzione dei vari enti omologici e omotopici, offre gran numero di esempi ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: ALGEBRA OMOLOGICA – MATEMATICA – MORFISMO
Mostra altri risultati Nascondi altri risultati su funtore (2)
Mostra Tutti

TENSORIALE, ALGEBRA e ANALISI

Enciclopedia Italiana - IV Appendice (1981)

TENSORIALE, ALGEBRA e ANALISI Dionigi Galletto Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] euclideo". Il valore g(v, w) (v, w ∈ En) prende il nome di "prodotto scalare" di v per w ed è indicato con v • w (= w • v). n) ogni punto non situato sul bordo ha un intorno omeomorfo (v. topologia astratta, App. II, 11, p. 1004) a un aperto di Rp ... Leggi Tutto

INTEGRAZIONE E MISURA

Enciclopedia Italiana - IV Appendice (1979)

INTEGRAZIONE E MISURA Giorgio Letta . La moderna teoria dell'i. si occupa del concetto generale di "misura" e del concetto di "integrale" relativo a un'arbitraria misura. Essa costituisce una notevole [...] numeri reali, munito della sua abituale topologia. In questa topologia ogni insieme aperto è riunione di elemento A di A e ogni elemento B di ℬ. La m. λ è detta il prodotto di μ per ν e è denotata con μ ⊗ ν. Per una funzione integrabile rispetto a ... Leggi Tutto

SPAZI ASTRATTI

Enciclopedia Italiana - II Appendice (1949)

SPAZI ASTRATTI Sandro FAEDO . L'analisi matematica classica studia le proprietà delle funzioni di una o più variabili numeriche. Tali funzioni sono determinate dai valori assunti dalla variabile x in [...] dati sono anche spazî lineari quando per somma di due elementi e prodotto di un elemento per un numero si diano le definizioni usuali. Spazî topologici (v. topologia astratta, in questa Appendice). - Gli spazî astratti conducono a considerazioni che ... Leggi Tutto

MILNOR, John Willard

Enciclopedia Italiana - IV Appendice (1979)

MILNOR, John Willard Aldo Marruccelli Matematico statunitense, nato a Orange (N. J.) il 20 febbraio 1931. Nel congresso internazionale dei matematici di Stoccolma, nel 1962, ha ricevuto la Fields medal. [...] in settori di collegamento tra la topologia e la geometria differenziale (varietà differenziabili Vn è uno spazio vettoriale di dimensione n, in esso è possibile definire un prodotto che sia bilineare e privo di divisori dello zero solamente se n = 1 ... Leggi Tutto
Mostra altri risultati Nascondi altri risultati su MILNOR, John Willard (2)
Mostra Tutti

La grande scienza. Cronologia scientifica: 1981-1990

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1981-1990 1981-1990 1981 Il sistema operativo MS-DOS. Tale sistema, realizzato dalla Microsoft e destinato a dominare nel suo settore, è utilizzato per la prima [...] insignito della medaglia Fields per i suoi contributi alla topologia delle dimensioni 2 e 3; iniziati dal 1978 ca. di quota e inclinata di 28°. Questo telescopio ha prodotto una massa di osservazioni di una qualità non ottenibile in stazioni ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La grande scienza. Cronologia scientifica: 1941-1950

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1941-1950 1941-1950 1941 Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] Malaria della Rockefeller Foundation. Data l'efficacia del prodotto, nel 1946-1947 viene varato dall'Alto n). S. Eilenberg e S. MacLane costruiscono e studiano gli spazi topologici K(π,n) che hanno tutti i gruppi di omotopia nulli eccetto ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA
1 2 3 4 5 6 7 8 ... 9
Vocabolario
prodótto²
prodotto2 prodótto2 s. m. [part. pass. sostantivato di produrre]. – 1. Genericam., tutto ciò che la terra produce o che costituisce il risultato di una qualsiasi attività umana: p. agricoli, vegetali; i p. della terra, del suolo, dei campi,...
complèsso²
complèsso2 s. m. [dal lat. complexus -us, der. di complecti (cfr. la voce prec.); il sign. psicanalitico è un calco del ted. Komplex]. – 1. Il tutto, l’insieme, in quanto costituito di più parti o elementi: un c. di persone, di cose; la cittadinanza...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali