La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] dell'indice. M.F. Atiyah e I.M. Singer scoprono l'uguaglianza tra l'indice di un operatore ellittico su una varietàdifferenziabile compatta, il suo indice analitico (l'indice del suo simbolo) e il suo indice topologico (definito tramite la K-teoria ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] all'astronomia da G.I. Hori (1966).
La congettura di Poincaré. Stephen Smale dimostra la famosa congettura per n≥5: una varietàdifferenziabile di dimensione n che ha la stessa omotopia di una sfera di dimensione n è omeomorfa a tale sfera. Questo ...
Leggi Tutto
campo
campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] sincrotrone, luce di: V 233 e. ◆ [ALG] C. di vettori, o di vettori tangenti: v. varietàdifferenziabili: VI 490 c. ◆ [ALG] [ANM] C. di vettori continuo e differenziabile: v. forme differenziali: II 686 b. ◆ [MCC] C. elastico: (a) regione di spazio in ...
Leggi Tutto
meccanica
meccànica [Der. del lat. mechanica, dal gr. mechaniké (téchne) "(arte) delle macchine"] [MCC] Nella suddivisione tradizionale della fisica, la scienza che studia le leggi del moto dei corpi, [...] quei sistemi meccanici, detti sistemi olonomi, il cui insieme delle configurazioni può assumere la struttura delle varietàdifferenziabili: v. meccanica analitica. ◆ [MCC] M. analitica lagrangiana e hamiltoniana: v. meccanica classica: III 682 b, 683 ...
Leggi Tutto
geometria
geometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] teorie fisiche. La g. differenziale studia oggi le proprietà e la classificazione di enti quali, per es., le varietàdifferenziabili, le varietà riemanniane e i fibrati, per i quali si rinvia alle voci relative. ◆ [PRB] G. differenziale stocastica: v ...
Leggi Tutto
spazio
spàzio [Der. del lat. spatium, probab. da patere "essere aperto"] [FAF] Con signif. intuitivo astratto e assoluto, il luogo illimitato in cui tutti gli oggetti materiali appaiono collocati, di [...] [FSD] S. reciproco: v. fononi nei solidi: II 672 c. ◆ [ALG] S. tangente: v. varietàdifferenziabili: VI489 c. ◆ [ALG] S. tangente complesso: v. varietà complesse: VI 479 e. ◆ [ALG] S. tensoriale: s. vettoriale costituito dal prodotto tensoriale di n ...
Leggi Tutto
Laplace Pierre-Simon de
Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] a. ◆ [ANM] Operatore di L.: lo stesso che laplaciano. ◆ [ALG] Operatore di L.-Beltrami: è la generalizzazione del laplaciano per varietàdifferenziabili: se d è la derivata esterna e δ è la sua aggiunta, è l'operatore ∇2=dδ+δd: v. forme differenziali ...
Leggi Tutto
Stokes Sir George Gabriel
Stokes 〈stóuks〉 Sir George Gabriel [STF] (Skreen 1819 - Cambridge 1903) Prof. di matematica nell'univ. di Cambridge (1837); socio straniero dei Lincei (1888). ◆ [MCF] Costante [...] circuitazione: v. campi, teoria classica dei: I 470 f. Nella geometria differenziale tale teorema si generalizza a varietàdifferenziabili: v. varietà riemanniane: VI 510 d. ◆ [GFS] Teoremi di S. (primo e secondo) della gravimetria: v. geodesia: III ...
Leggi Tutto
Sobolev Sergei L'vovic
Sobolev 〈sòbëlif〉 Sergei L'vovič [STF] (Pietroburgo 1908 - Mosca 1989) Matematico nell'Istituto di sismologia dell'Accademia delle Scienze dell'URSS (1929) e poi nell'Istituto [...] ) e anche direttore del detto Istituto di matematica (1959); socio straniero dei Lincei (1964). ◆ [ANM] Spazio di S. di applicazioni: v. varietàdifferenziabili infinito-dimensionali: VI 493 a. ◆ [ANM] Teorema di immersione di Morrey-S.-Rellich: v ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] di classe Ck è sufficiente considerare i cicli di classe Ck.
Realizzazioni di varietàdifferenziabili. L'americano Hassler Whitney dimostra che ogni varietàdifferenziabile di dimensione n può essere immersa in ℝ2n senza autointersezioni.
Il più ...
Leggi Tutto
varieta1
varietà1 s. f. [dal lat. variĕtas -atis, der. di varius «vario»]. – 1. a. La qualità di ciò che è vario, sia di più cose che sono diverse tra loro, sia di una cosa singola, in quanto sia diversa negli elementi che la compongono, negli...
differenziare
v. tr. [der. di differenza] (io differènzio, ecc.). – 1. a. Rendere differente, costituire elemento che permette di distinguere tra persone o cose: l’uso della ragione differenzia l’uomo dagli animali; meno com., stabilire quali...