• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
18 risultati
Tutti i risultati [128]
Storia della fisica [18]
Matematica [71]
Fisica [42]
Algebra [42]
Fisica matematica [38]
Analisi matematica [24]
Temi generali [23]
Statistica e calcolo delle probabilita [18]
Geometria [12]
Meccanica [16]

La grande scienza. Cronologia scientifica: 1961-1970

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1961-1970 1961-1970 1961 Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] dell'indice. M.F. Atiyah e I.M. Singer scoprono l'uguaglianza tra l'indice di un operatore ellittico su una varietà differenziabile compatta, il suo indice analitico (l'indice del suo simbolo) e il suo indice topologico (definito tramite la K-teoria ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – STORIA DELLA BIOLOGIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La grande scienza. Cronologia scientifica: 1951-1960

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1951-1960 1951-1960 1951 Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] all'astronomia da G.I. Hori (1966). La congettura di Poincaré. Stephen Smale dimostra la famosa congettura per n≥5: una varietà differenziabile di dimensione n che ha la stessa omotopia di una sfera di dimensione n è omeomorfa a tale sfera. Questo ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

campo

Dizionario delle Scienze Fisiche (1996)

campo campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] sincrotrone, luce di: V 233 e. ◆ [ALG] C. di vettori, o di vettori tangenti: v. varietà differenziabili: VI 490 c. ◆ [ALG] [ANM] C. di vettori continuo e differenziabile: v. forme differenziali: II 686 b. ◆ [MCC] C. elastico: (a) regione di spazio in ... Leggi Tutto
CATEGORIA: ACUSTICA – BIOFISICA – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su campo (2)
Mostra Tutti

meccanica

Dizionario delle Scienze Fisiche (1996)

meccanica meccànica [Der. del lat. mechanica, dal gr. mechaniké (téchne) "(arte) delle macchine"] [MCC] Nella suddivisione tradizionale della fisica, la scienza che studia le leggi del moto dei corpi, [...] quei sistemi meccanici, detti sistemi olonomi, il cui insieme delle configurazioni può assumere la struttura delle varietà differenziabili: v. meccanica analitica. ◆ [MCC] M. analitica lagrangiana e hamiltoniana: v. meccanica classica: III 682 b, 683 ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su meccanica (4)
Mostra Tutti

geometria

Dizionario delle Scienze Fisiche (1996)

geometria geometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] teorie fisiche. La g. differenziale studia oggi le proprietà e la classificazione di enti quali, per es., le varietà differenziabili, le varietà riemanniane e i fibrati, per i quali si rinvia alle voci relative. ◆ [PRB] G. differenziale stocastica: v ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su geometria (13)
Mostra Tutti

spazio

Dizionario delle Scienze Fisiche (1996)

spazio spàzio [Der. del lat. spatium, probab. da patere "essere aperto"] [FAF] Con signif. intuitivo astratto e assoluto, il luogo illimitato in cui tutti gli oggetti materiali appaiono collocati, di [...] [FSD] S. reciproco: v. fononi nei solidi: II 672 c. ◆ [ALG] S. tangente: v. varietà differenziabili: VI489 c. ◆ [ALG] S. tangente complesso: v. varietà complesse: VI 479 e. ◆ [ALG] S. tensoriale: s. vettoriale costituito dal prodotto tensoriale di n ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su spazio (10)
Mostra Tutti

Laplace Pierre-Simon de

Dizionario delle Scienze Fisiche (1996)

Laplace Pierre-Simon de Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] a. ◆ [ANM] Operatore di L.: lo stesso che laplaciano. ◆ [ALG] Operatore di L.-Beltrami: è la generalizzazione del laplaciano per varietà differenziabili: se d è la derivata esterna e δ è la sua aggiunta, è l'operatore ∇2=dδ+δd: v. forme differenziali ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – ACCADEMIA DI FRANCIA – EQUAZIONI ELLITTICHE – FORZA GRAVITAZIONALE – CORRENTE ELETTRICA
Mostra altri risultati Nascondi altri risultati su Laplace Pierre-Simon de (4)
Mostra Tutti

Stokes Sir George Gabriel

Dizionario delle Scienze Fisiche (1996)

Stokes Sir George Gabriel Stokes 〈stóuks〉 Sir George Gabriel [STF] (Skreen 1819 - Cambridge 1903) Prof. di matematica nell'univ. di Cambridge (1837); socio straniero dei Lincei (1888). ◆ [MCF] Costante [...] circuitazione: v. campi, teoria classica dei: I 470 f. Nella geometria differenziale tale teorema si generalizza a varietà differenziabili: v. varietà riemanniane: VI 510 d. ◆ [GFS] Teoremi di S. (primo e secondo) della gravimetria: v. geodesia: III ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: RADIAZIONE ELETTROMAGNETICA – GEOMETRIA DIFFERENZIALE – VARIETÀ RIEMANNIANE – CAMPO VETTORIALE – LUNGHEZZE D'ONDA
Mostra altri risultati Nascondi altri risultati su Stokes Sir George Gabriel (3)
Mostra Tutti

Sobolev Sergei L'vovic

Dizionario delle Scienze Fisiche (1996)

Sobolev Sergei L'vovic Sobolev 〈sòbëlif〉 Sergei L'vovič [STF] (Pietroburgo 1908 - Mosca 1989) Matematico nell'Istituto di sismologia dell'Accademia delle Scienze dell'URSS (1929) e poi nell'Istituto [...] ) e anche direttore del detto Istituto di matematica (1959); socio straniero dei Lincei (1964). ◆ [ANM] Spazio di S. di applicazioni: v. varietà differenziabili infinito-dimensionali: VI 493 a. ◆ [ANM] Teorema di immersione di Morrey-S.-Rellich: v ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: MATEMATICA – SISMOLOGIA – MOSCA
Mostra altri risultati Nascondi altri risultati su Sobolev Sergei L'vovic (2)
Mostra Tutti

La grande scienza. Cronologia scientifica: 1941-1950

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1941-1950 1941-1950 1941 Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] di classe Ck è sufficiente considerare i cicli di classe Ck. Realizzazioni di varietà differenziabili. L'americano Hassler Whitney dimostra che ogni varietà differenziabile di dimensione n può essere immersa in ℝ2n senza autointersezioni. Il più ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA
1 2
Vocabolario
varietà¹
varieta1 varietà1 s. f. [dal lat. variĕtas -atis, der. di varius «vario»]. – 1. a. La qualità di ciò che è vario, sia di più cose che sono diverse tra loro, sia di una cosa singola, in quanto sia diversa negli elementi che la compongono, negli...
differenziare
differenziare v. tr. [der. di differenza] (io differènzio, ecc.). – 1. a. Rendere differente, costituire elemento che permette di distinguere tra persone o cose: l’uso della ragione differenzia l’uomo dagli animali; meno com., stabilire quali...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali