• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
40 risultati
Tutti i risultati [547]
Algebra [40]
Matematica [153]
Fisica [83]
Biologia [57]
Medicina [60]
Temi generali [48]
Biografie [49]
Analisi matematica [40]
Fisica matematica [39]
Geometria [31]

EQUAZIONI

Enciclopedia Italiana - VI Appendice (2000)

(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131). Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] Siano a₁(t), a₂(t), …, an(t) funzioni note. Allora una soluzione f(t) dell'e. differenziale f(t)(n)+a₁(t)f(t)(n⁻¹)+…+an(t)=0 è una nuova funzione nota. (P5)-Sia A una varietà abeliana su C di dimensione n e p: Cn→A la mappa di ricoprimento universale ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE – ACCADEMIA DELLE SCIENZE DI PARIGI – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONI ALLE DERIVATE PARZIALI – DISUGUAGLIANZA ISOPERIMETRICA
Mostra altri risultati Nascondi altri risultati su EQUAZIONI (9)
Mostra Tutti

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] il suo nome. Lie cominciò con la teoria delle equazioni differenziali, che rimase sempre un punto di riferimento nel suo lavoro. particolarmente interessato ai gruppi che possono agire su una varietà di dimensione piccola, con il che egli intendeva ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

La grande scienza. Combinatoria

Storia della Scienza (2003)

La grande scienza. Combinatoria Peter J. Cameron Combinatoria Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] a una rete discreta che a una varietà continua. La lunghezza di Planck è così piccola che, nella scala alla quale noi possiamo misurare, tale discretezza viene appianata, ed è per questo che le equazioni differenziali danno una buona descrizione dell ... Leggi Tutto
CATEGORIA: ALGEBRA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] in modo particolare le equazioni e i sistemi di equazioni differenziali lineari. Il quinto capitolo sviluppa lo studio locale di una risultati principali della teoria delle varietà differenziali e delle varietà analitiche su un corpo valutato ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

Equazioni funzionali

Enciclopedia del Novecento (1977)

Equazioni funzionali JJacques Louis Lions di Jacques Louis Lions Equazioni funzionali sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] , possibile adattare la (19) integrando nello spazio complesso ed evitando così la varietà P = 0. In tal modo si giunge a dimostrare che per ogni non differenziabile, possiamo ‛sostituire' a J′(u) il ‛sub-differenziale' ∂J(u) di J nel punto u:∂J(u) ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – FUNZIONI A QUADRATO SOMMABILE – TEORIA QUANTISTICA DEI CAMPI – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Equazioni funzionali (2)
Mostra Tutti

Fermat, ultimo teorema di

Enciclopedia della Scienza e della Tecnica (2007)

Fermat, ultimo teorema di Massimo Bertolin "Cubum autem in duos cubos, aut quadrato quadratum in duos quadrato quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem [...] di spazio vettoriale complesso. Data f(z) in S2(N), il differenziale f(z)dz è invariante per l'azione di Γ0(N) ed è modulare X0(N) o, equivalentemente, con un anello di endomorfismi della varietà jacobiana J0(N) di X0(N). Fissata una forma f in ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – PETER GUSTAV, LEJEUNE DIRICHLET – DOMINI A FATTORIZZAZIONE UNICA – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Algebra Claudio Procesi Algebra Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] i punti di vista ha un ruolo importante l'idea di varietà caratteristica che ha un'origine classica nello studio delle equazioni differenziali iperboliche. I sistemi in cui la varietà caratteristica è la più piccola possibile hanno un ruolo speciale ... Leggi Tutto
CATEGORIA: ALGEBRA

Combinatoria

Enciclopedia della Scienza e della Tecnica (2007)

Combinatoria Peter J. Cameron Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri non rappresenta una branca separata dalle altre ma le pervade tutte, poiché [...] avuto il predominio. A seguito dello sviluppo del calcolo differenziale e integrale di Isaac Newton e Gottfried W. Leibniz stesso discreto: assomiglia più a una rete che a una varietà continua, se studiato su piccola scala, paragonabile alla lunghezza ... Leggi Tutto
CATEGORIA: ALGEBRA – ARITMETICA
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – TEORIA DELLE RAPPRESENTAZIONI – INSIEMI PARZIALMENTE ORDINATI – PROBLEMA DEI QUATTRO COLORI – FONDAMENTI DELLA MATEMATICA
Mostra altri risultati Nascondi altri risultati su Combinatoria (4)
Mostra Tutti

geometria

Dizionario delle Scienze Fisiche (1996)

geometria geometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] Riemann hanno in seguito dato origine ad algoritmi assai validi per trattare la g. differenziale di una varietà in senso moderno, quali il calcolo differenziale, la teoria delle connessioni, ecc., che dovevano fornire ad A. Einstein i mezzi per ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su geometria (13)
Mostra Tutti

Laplace Pierre-Simon de

Dizionario delle Scienze Fisiche (1996)

Laplace Pierre-Simon de Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] Operatore di L.-Beltrami: è la generalizzazione del laplaciano per varietà differenziabili: se d è la derivata esterna e δ è la sua aggiunta, è l'operatore ∇2=dδ+δd: v. forme differenziali: II 689 e. ◆ [ANM] Polinomi di L.: polinomi armonici omogenei ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – ACCADEMIA DI FRANCIA – EQUAZIONI ELLITTICHE – FORZA GRAVITAZIONALE – CORRENTE ELETTRICA
Mostra altri risultati Nascondi altri risultati su Laplace Pierre-Simon de (4)
Mostra Tutti
1 2 3 4
Vocabolario
connessióne
connessione connessióne s. f. [dal lat. connexio -onis, der. di connexus, part. pass. di connectĕre «connettere»]. – 1. L’essere connesso, intima unione fra due o più cose; per lo più fig., legame di stretta relazione e interdipendenza tra...
differenziare
differenziare v. tr. [der. di differenza] (io differènzio, ecc.). – 1. a. Rendere differente, costituire elemento che permette di distinguere tra persone o cose: l’uso della ragione differenzia l’uomo dagli animali; meno com., stabilire quali...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali