• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
39 risultati
Tutti i risultati [547]
Fisica matematica [39]
Matematica [153]
Fisica [83]
Biologia [57]
Medicina [60]
Temi generali [48]
Biografie [49]
Analisi matematica [40]
Algebra [40]
Geometria [31]

Laplace Pierre-Simon de

Dizionario delle Scienze Fisiche (1996)

Laplace Pierre-Simon de Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] Operatore di L.-Beltrami: è la generalizzazione del laplaciano per varietà differenziabili: se d è la derivata esterna e δ è la sua aggiunta, è l'operatore ∇2=dδ+δd: v. forme differenziali: II 689 e. ◆ [ANM] Polinomi di L.: polinomi armonici omogenei ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – ACCADEMIA DI FRANCIA – EQUAZIONI ELLITTICHE – FORZA GRAVITAZIONALE – CORRENTE ELETTRICA
Mostra altri risultati Nascondi altri risultati su Laplace Pierre-Simon de (4)
Mostra Tutti

gradiente

Dizionario delle Scienze Fisiche (1996)

gradiente gradiènte [Der. del part. pres. gradiens -entis del lat. gradi "procedere"] [LSF] Oltre che nei signif. rigorosi dell'analisi vettoriale (per i quali v. oltre: G. di uno scalare), il termine [...] : III 328 a. ◆ [ANM] G. di un campo scalare: operatore differenziale che, applicato a un campo scalare s, dà, per il punto cui è m di aumento della profondità. ◆ [ANM] G. riemanniano: v. varietà riemanniane: VI 503 e. ◆ [GFS] G. termico verticale dell ... Leggi Tutto
CATEGORIA: BIOFISICA – ELETTROLOGIA – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – METEOROLOGIA – METROLOGIA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su gradiente (4)
Mostra Tutti

calcolo

Dizionario delle Scienze Fisiche (1996)

calcolo càlcolo [Der. del lat. calculus, propr. "pietruzza", qui nel signif. di "gettone per fare conti"] [ALG] [ANM] (a) Insieme di procedimenti atti a dare la soluzione di un dato problema matematico [...] seguito si rimanda alle voci relative all'aggettivo o al sostantivo qualificativo. ◆ [ANM] C. differenziale assoluto: formulazione del c. differenziale su varietà, invariante per trasformazioni locali di coordinate: v. tensore: VI 125 c. ◆ [ANM] C ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su calcolo (11)
Mostra Tutti

Stokes Sir George Gabriel

Dizionario delle Scienze Fisiche (1996)

Stokes Sir George Gabriel Stokes 〈stóuks〉 Sir George Gabriel [STF] (Skreen 1819 - Cambridge 1903) Prof. di matematica nell'univ. di Cambridge (1837); socio straniero dei Lincei (1888). ◆ [MCF] Costante [...] con la linea di circuitazione: v. campi, teoria classica dei: I 470 f. Nella geometria differenziale tale teorema si generalizza a varietà differenziabili: v. varietà riemanniane: VI 510 d. ◆ [GFS] Teoremi di S. (primo e secondo) della gravimetria: v ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: RADIAZIONE ELETTROMAGNETICA – GEOMETRIA DIFFERENZIALE – VARIETÀ RIEMANNIANE – CAMPO VETTORIALE – LUNGHEZZE D'ONDA
Mostra altri risultati Nascondi altri risultati su Stokes Sir George Gabriel (3)
Mostra Tutti

topologia

Dizionario delle Scienze Fisiche (1996)

topologia topologìa [Comp. di topo- e -logia] [LSF] Per estensione del signif. nell'algebra (v. oltre), il termine indica anche la forma intrinseca di una struttura, cioè la forma che attiene alle proprietà [...] t. nella prima fase del suo sviluppo storico: v. funzionale, analisi: II 770 a. ◆ [ALG] T. differenziale: lo studio delle proprietà topologiche delle varietà e delle applicazioni differenziabili. ◆ [ALG] T. di un'algebra di von Neumann (t. debole, σ ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA
Mostra altri risultati Nascondi altri risultati su topologia (6)
Mostra Tutti

affinità

Dizionario delle Scienze Fisiche (1996)

affinita affinità [Der. di affine] [ALG] (a) Particolare omografia tra due piani in cui si corrispondono le rette improprie. (b) Nella geometria delle varietà, corrispondenza tra gli enti geometrici [...] per un campo vettoriale non uniforme la differenza dui-Γihkuhdxk si chiama differenziale assoluto e il tensore ui/k=ðui/ðxk+Γihk uh è la parte antisimmetrica dell'a. si annulla, come nelle varietà riemanniane, e rimangono solo 40 componenti; la parte ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – ALGEBRA
Mostra altri risultati Nascondi altri risultati su affinità (3)
Mostra Tutti

La grande scienza. Cronologia scientifica: 1981-1990

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1981-1990 1981-1990 1981 Il sistema operativo MS-DOS. Tale sistema, realizzato dalla Microsoft e destinato a dominare nel suo settore, è utilizzato per la prima [...] , in particolare per le ricerche sulle varietà tridimensionali. Shing-Tung Yau, USA (Hong Kong), Institute for Advanced Study, Princeton, New Jersey, per i risultati ottenuti sulle equazioni differenziali alle derivate parziali. 1983 Nobel per ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

L'Ottocento: matematica. Geometria superiore

Storia della Scienza (2003)

L'Ottocento: matematica. Geometria superiore David E. Rowe Geometria superiore Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] a più dimensioni e in breve tempo si assistette alla nascita della teoria delle varietà, della topologia algebrica e della geometria differenziale moderna. Un secondo importante indirizzo di ricerca riguarda gli studi sugli spazi lineari a più ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – GEOMETRIA – STORIA DELLA MATEMATICA

BURGATTI, Pietro

Dizionario Biografico degli Italiani (1972)

BURGATTI, Pietro Enzo Pozzato Nacque a Cento (Ferrara) il 27 febbr. 1868 da Federico e da Marietta Biegoli. Aveva abbracciato negli anni giovanili la carriera militare, che abbandonò per l'interesse [...] su una superficie, estendendo poi tali teoremi alle varietà a n dimensioni: Sulle discontinuità delle funzioni scalari e . Nei settori dell'analisi matematica e della geometria differenziale sono da ricordare in particolare l'estensione, ideata dal ... Leggi Tutto
CATEGORIA: BIOGRAFIE – FISICA MATEMATICA
Mostra altri risultati Nascondi altri risultati su BURGATTI, Pietro (1)
Mostra Tutti

armònico

Dizionario delle Scienze Fisiche (1996)

armonico armònico [agg. (pl.m. -ci) e s.m. Der. del gr. harmonikós, da harmózo "accordare"] [LSF] Termine inizialmente proprio dell'arte musicale, dall'accez. relativa alle corde di alcuni strumenti [...] forma a. (v. oltre). ◆ [ANM] Forma a.: forma differenziale esterna F che soddisfa la condizione, generalizzazione dell'equazione a. di Laplace euclideo, ma anche sopra una varietà differenziabile (per le p-forme a., v. varietà riemanniane: VI 506 a). ... Leggi Tutto
CATEGORIA: ACUSTICA – FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
1 2 3 4
Vocabolario
connessióne
connessione connessióne s. f. [dal lat. connexio -onis, der. di connexus, part. pass. di connectĕre «connettere»]. – 1. L’essere connesso, intima unione fra due o più cose; per lo più fig., legame di stretta relazione e interdipendenza tra...
differenziare
differenziare v. tr. [der. di differenza] (io differènzio, ecc.). – 1. a. Rendere differente, costituire elemento che permette di distinguere tra persone o cose: l’uso della ragione differenzia l’uomo dagli animali; meno com., stabilire quali...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali