• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
11 risultati
Tutti i risultati [80]
Meccanica [11]
Matematica [58]
Fisica [31]
Fisica matematica [24]
Geometria [18]
Algebra [22]
Analisi matematica [14]
Relativita e gravitazione [14]
Biografie [11]
Temi generali [11]

Sistemi dinamici

Enciclopedia del Novecento II Supplemento (1998)

Sistemi dinamici Giovanni Jona-Lasinio Ya. G. Sinai Origini e sviluppo, di Giovanni Jona-Lasinio Risultati recenti, di Ya. G. Sinai Origini e sviluppo di Giovanni Jona-Lasinio SOMMARIO: 1. Introduzione.  [...] vettore tangente iniziale x. Talvolta i matematici dicono che il flusso geodetico corrisponde al moto libero su una varietà riemanniana. 5. SD di origine algebrica. - In molte situazioni la dinamica può avere simmetrie addizionali. In tal caso anche ... Leggi Tutto
CATEGORIA: MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – SOTTOINSIEME DI MISURA NULLA – DISTRIBUZIONE DI PROBABILITÀ – SISTEMI DI EQUAZIONI LINEARI
Mostra altri risultati Nascondi altri risultati su Sistemi dinamici (3)
Mostra Tutti

geometria

Dizionario delle Scienze Fisiche (1996)

geometria geometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] teorie fisiche. La g. differenziale studia oggi le proprietà e la classificazione di enti quali, per es., le varietà differenziabili, le varietà riemanniane e i fibrati, per i quali si rinvia alle voci relative. ◆ [PRB] G. differenziale stocastica: v ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su geometria (13)
Mostra Tutti

differenziale

Dizionario delle Scienze Fisiche (1996)

differenziale differenziale [agg. e s.m. Der. di differenza] [ANM] Nella sua forma più semplice, cioè per funzioni reali di variabile reale, è un funzionale lineare (propr. d. primo) che a ogni f:I⊂R→R [...] (o comandato), speciale tipo di d. impiegato nei veicoli cingolati, con funzioni di sterzo. ◆ [ANM] D. assoluto: in una varietà riemanniana, la differenza tra il d. ordinario e quello covariante (v. oltre). ◆ [ANM] D. covariante: v. connessione in ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su differenziale (3)
Mostra Tutti

azióne

Dizionario delle Scienze Fisiche (1996)

azione azióne [Der. del lat. actio- onis, dal part. pass. actus di agere "agire"] [LSF] (a) Termine usato generic. come sinon. di forza: a. molecolari, a. a distanza, ecc.; (b) Il modo con cui determinati [...] dei continui: III 695 e. ◆ [MCC] A. di Maupertuis: v. oltre: A. di un sistema. ◆ [ALG] A. di una varietà riemanniana: v. varietà riemanniane: VI 499 f. ◆ [MCC] A. di un sistema: funzionale espresso dall'integrale definito di una funzione i cui valori ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA

riemanniano

Dizionario delle Scienze Fisiche (1996)

riemanniano riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] anche di geometria metrica intrinseca. Lo spazio euclideo a r dimensioni rientra come caso particolarissimo tra le varietà riemanniane. Viceversa, una varietà r. è di tipo euclideo se in essa, relativ. a un opportuno sistema di coordinate, ds2 si ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – EPISTEMOLOGIA – METAFISICA

connessione

Dizionario delle Scienze Fisiche (1996)

connessione connessióne [Der. del lat. connessio -onis, dal lat. connexus (→ connesso) "l'essere connesso, il modo in cui si è connessi"] [ALG] [ANM] Generic., legame di dipendenza fra due o più grandezze [...] dei campi tensoriali e la nozione di trasporto parallelo: v. connessione: I 725 a. ◆ [ALG] C. riemanniana: c. affine definita su una varietà riemanniana M dotata di metrica g, tale che la derivata covariante di g sia nulla. ◆ [MCC] C. sella ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA QUANTISTICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su connessione (1)
Mostra Tutti

varieta

Dizionario delle Scienze Fisiche (1996)

varieta varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] ◆ [ALG] V. quoziente: v. invarianti, teoria degli: III 287 c. ◆ [ALG] V. Ricci-piatta: v. varietà riemanniane: VI 501 d. ◆ [RGR] V. riemanniana: concetto che sorge con lo scopo principale di estendere a spazi arbitrari le classiche proprietà metriche ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su varieta (6)
Mostra Tutti

meccanica

Dizionario delle Scienze Fisiche (1996)

meccanica meccànica [Der. del lat. mechanica, dal gr. mechaniké (téchne) "(arte) delle macchine"] [MCC] Nella suddivisione tradizionale della fisica, la scienza che studia le leggi del moto dei corpi, [...] delle configurazioni può assumere la struttura delle varietà differenziabili: v. meccanica analitica. ◆ [MCC relativa dei sistemi: v. meccanica relativa: III 722 b. ◆ [MCC] M. riemanniana: v. meccanica analitica: III 658 a. ◆ [MCC] M. rigida: lo ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su meccanica (4)
Mostra Tutti

Gauss Karl Friedrich

Dizionario delle Scienze Fisiche (1996)

Gauss Karl Friedrich Gauss 〈gàus〉 Karl Friedrich [STF] (Brunswick 1777 - Gottinga 1855) Prof. di astronomia nell'univ. di Gottinga e direttore del locale Osservatorio astronomico (1807). ◆ [ALG] Applicazione [...] : VI 509 c, f. ◆ [ALG] Formula di G.-Bonnet: v. curve e superfici: II 82 d. ◆ [ALG] Formula di G.-Bonnet-Chern: v. varietà riemanniane: VI 510 f. ◆ [OTT] Formula di G. per un sistema ottico: v. ottica geometrica: IV 387 c. ◆ [ALG] Formule di G.: v ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – METODO DEI MINIMI QUADRATI – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – SERIE IPERGEOMETRICA
Mostra altri risultati Nascondi altri risultati su Gauss Karl Friedrich (5)
Mostra Tutti

Riemann Bernhard

Dizionario delle Scienze Fisiche (1996)

Riemann Bernhard Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] espresso attraverso le sue componenti covarianti dà luogo al cosiddetto tensore di R.-Christoffel o tensore di curvatura: v. varietà riemanniane: VI 498 e. ◆ [RGR] Tensore di R.-Christoffel: il tensore di R. (v. sopra) espresso con le sue componenti ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: METRICA RIEMANNIANA – VARIETÀ COMPLESSA – MATEMATICA – GOTTINGA – FIBRATI
Mostra altri risultati Nascondi altri risultati su Riemann Bernhard (5)
Mostra Tutti
1 2
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali