• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
22 risultati
Tutti i risultati [80]
Algebra [22]
Matematica [58]
Fisica [31]
Fisica matematica [24]
Geometria [18]
Analisi matematica [14]
Relativita e gravitazione [14]
Biografie [11]
Temi generali [11]
Meccanica [11]

SISTEMI DINAMICI

Enciclopedia Italiana - VI Appendice (2000)

Sistemi dinamici Franco Magri Dmitrij Anosov Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] a ogni campo vettoriale una forma differenziale detta forma simplettica. Da questo punto di vista una varietà simplettica non differisce molto da una varietà riemanniana, dove lo stesso tipo di legame è realizzato dal 'tensore metrico' della ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONI DIFFERENZIALI DEL MOTO – EQUAZIONI ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE LINEARE – TEORIA DELLE PERTURBAZIONI
Mostra altri risultati Nascondi altri risultati su SISTEMI DINAMICI (3)
Mostra Tutti

geometria

Dizionario delle Scienze Fisiche (1996)

geometria geometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] teorie fisiche. La g. differenziale studia oggi le proprietà e la classificazione di enti quali, per es., le varietà differenziabili, le varietà riemanniane e i fibrati, per i quali si rinvia alle voci relative. ◆ [PRB] G. differenziale stocastica: v ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su geometria (13)
Mostra Tutti

differenziale

Dizionario delle Scienze Fisiche (1996)

differenziale differenziale [agg. e s.m. Der. di differenza] [ANM] Nella sua forma più semplice, cioè per funzioni reali di variabile reale, è un funzionale lineare (propr. d. primo) che a ogni f:I⊂R→R [...] (o comandato), speciale tipo di d. impiegato nei veicoli cingolati, con funzioni di sterzo. ◆ [ANM] D. assoluto: in una varietà riemanniana, la differenza tra il d. ordinario e quello covariante (v. oltre). ◆ [ANM] D. covariante: v. connessione in ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su differenziale (3)
Mostra Tutti

geodetica

Dizionario delle Scienze Fisiche (1996)

geodetica geodètica [s.f. dall'agg. geodetico] [RGR] G. affine: v. gravitazionale, moto relativistico: III 89 e. ◆ [RGR] G. di tipo tempo: v. buco nero: I 387 f. ◆ [ALG] G. di una superficie: linea tracciata [...] qualunque superficie per la quale si possa parlare di "lunghezza" di una linea tracciata su essa. ◆ [ALG] G. di una varietà riemanniana: v. varietà riemanniane: VI 501 f. ◆ [RGR] G. non affini: v. buco nero: I 386 e. ◆ [RGR] G. nulla: lo stesso che g ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – RELATIVITA E GRAVITAZIONE – ALGEBRA
Mostra altri risultati Nascondi altri risultati su geodetica (3)
Mostra Tutti

azióne

Dizionario delle Scienze Fisiche (1996)

azione azióne [Der. del lat. actio- onis, dal part. pass. actus di agere "agire"] [LSF] (a) Termine usato generic. come sinon. di forza: a. molecolari, a. a distanza, ecc.; (b) Il modo con cui determinati [...] dei continui: III 695 e. ◆ [MCC] A. di Maupertuis: v. oltre: A. di un sistema. ◆ [ALG] A. di una varietà riemanniana: v. varietà riemanniane: VI 499 f. ◆ [MCC] A. di un sistema: funzionale espresso dall'integrale definito di una funzione i cui valori ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA

riemanniano

Dizionario delle Scienze Fisiche (1996)

riemanniano riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] anche di geometria metrica intrinseca. Lo spazio euclideo a r dimensioni rientra come caso particolarissimo tra le varietà riemanniane. Viceversa, una varietà r. è di tipo euclideo se in essa, relativ. a un opportuno sistema di coordinate, ds2 si ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – EPISTEMOLOGIA – METAFISICA

connessione

Dizionario delle Scienze Fisiche (1996)

connessione connessióne [Der. del lat. connessio -onis, dal lat. connexus (→ connesso) "l'essere connesso, il modo in cui si è connessi"] [ALG] [ANM] Generic., legame di dipendenza fra due o più grandezze [...] dei campi tensoriali e la nozione di trasporto parallelo: v. connessione: I 725 a. ◆ [ALG] C. riemanniana: c. affine definita su una varietà riemanniana M dotata di metrica g, tale che la derivata covariante di g sia nulla. ◆ [MCC] C. sella ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA QUANTISTICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su connessione (1)
Mostra Tutti

parallelismo

Dizionario delle Scienze Fisiche (1996)

parallelismo parallelismo [Der. di parallelo] [ALG] La condizione di enti (rette, vettori, piani, ecc.) che sono paralleli tra loro o ad altri enti. ◆ [FTC] In varie discipline tecniche, modo di funzionare [...] prodotto vettoriale. ◆ [ELT] [INF] Grado di p.: v. microprocessore: III 830 c. ◆ [ALG] Problema del p. assoluto: riguarda la generalizzazione del concetto di trasporto (←) parallelo dell'ordinario spazio euclideo a una qualunque varietà riemanniana. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA TECNICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA

geometrico

Dizionario delle Scienze Fisiche (1996)

geometrico geomètrico [agg. (pl.m. -ci) Der. di geometria "attinente alla geometria, che si serve della geometria"]  Distribuzione g.: v. probabilità classica: IV 585 c. ◆ Progressione g.: quella dei [...] solo se r<1. ◆ Struttura g.: di uno spazio metrico o di una varietà riemanniana o pseudoriemanniana, s’identifica con il tensore metrico dello spazio o della varietà detti. ◆ Trasformazione g.: quella fra due spazi dotati di struttura geometrica ... Leggi Tutto
CATEGORIA: ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA

minkowskiano

Dizionario delle Scienze Fisiche (1996)

minkowskiano minkowskiano 〈minkofskiano〉 [agg. Der. del cognome di H. Minkowski] [RGR] Metrica m.: lo stesso che metrica di Minkowski: → Minkowski, Hermann. ◆ [ALG] [RGR] Sistema di riferimento m. locale: [...] sistema di riferimento in un punto di una varietà riemanniana tale che il suo tensore metrico è il tensore minkowskiano. ◆ [ALG] [RGR] Tensore m.: tensore metrico diagonale con elementi sulla diagonale (1, -1, -1, -1). ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – RELATIVITA E GRAVITAZIONE – ALGEBRA
1 2 3
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali