CACCIOPPOLI, Renato
Alessandro Figà Talamanca
Nacque a Napoli il 20 genn. 1904. Suo padre, Giuseppe, era un noto chirurgo napoletano, sua madre, Sofia, era figlia del celebre rivoluzionario russo Michail [...] ), pp. 3-11 e 137-146, e Misura e integrazione sulle varietà parametriche, note I, II e III, ibid., pp. 219-227, , e Funzioni pseudo-analitiche e rappresentazioni pseudo-conformi delle superfici riemanniane, in Ricerche di mat., II(1953), pp. 104-127 ...
Leggi Tutto
BOMPIANI, Enrico
Giorgio Israel
Nacque il 12 febbr. 1889 a Roma da Arturo e da Domenica Gaifani. Abbandonando la tradizione di studi in medicina della famiglia (il padre e due fratelli erano illustri [...] in uno spazio di Riemann e l'introduzione di nuovi invarianti per la geometria riemanniana (Spazi riemanniani, luoghi di varietà totalmente geodetiche, ibid., XXXII [1923], pp. 14-15).
Va infine menzionato l'interesse che il B. ebbe sempre, in ...
Leggi Tutto
ARZELÀ, Cesare
Nicola Virgopia
Nacque a S. Stefano di Magra (La Spezia) il 6 marzo 1847, da modesta famiglia. Compì i primi studi al ginnasio di Sarzana e poi, come borsista, al liceo di Pisa. Allievo [...] tra la teoria delle funzioni di linea e la dimostrazione riemanniana del principio di DirichIet. Sempre facendo uso della teoria delle Altrettanto successo ebbero i risultati dell'A., sulle varietà di funzioni, sia per le loro applicazioni alla ...
Leggi Tutto
Gauss Karl Friedrich
Gauss 〈gàus〉 Karl Friedrich [STF] (Brunswick 1777 - Gottinga 1855) Prof. di astronomia nell'univ. di Gottinga e direttore del locale Osservatorio astronomico (1807). ◆ [ALG] Applicazione [...] : VI 509 c, f. ◆ [ALG] Formula di G.-Bonnet: v. curve e superfici: II 82 d. ◆ [ALG] Formula di G.-Bonnet-Chern: v. varietàriemanniane: VI 510 f. ◆ [OTT] Formula di G. per un sistema ottico: v. ottica geometrica: IV 387 c. ◆ [ALG] Formule di G.: v ...
Leggi Tutto
curvatura
curvatura [Lat. curvatura, da curva] [RGR] C. dello spazio-tempo: v. relatività generale: IV 789 c. ◆ [ASF] C. dell'Universo: v. Universo: VI 418 e. ◆ [OTT] C. di campo: una delle aberrazioni [...] II 80 b. ◆ [OTT] C. di un raggio ottico: v. propaga-zione ottica: IV 612 a. ◆ [ALG] C. estrinseca di un'ipersuperficie: v. varietàriemanniane: VI 509 c. ◆ [ALG] C. gaussiana: lo stesso che c. totale. ◆ [ALG] C. media: v. sopra: C. di una curva piana ...
Leggi Tutto
metrica riemanniana
Luca Tomassini
Un tensore g di rango 2 definito su una varietà differenziabile n-dimensionale che sia covariante, simmetrico e definito positivo. In ogni spazio tangente TπMν nel [...] la più piccola delle lunghezze delle curve regolari a tratti con estremi p,q. Con questa distanza la varietà Mν diviene uno spazio metrico. Due varietàriemanniane Mν1 e Mν2 si dicono isometriche se esiste un mappa ϕ:Mν1→Mν2 tale che
Una curva che ...
Leggi Tutto
affinita
affinità [Der. di affine] [ALG] (a) Particolare omografia tra due piani in cui si corrispondono le rette improprie. (b) Nella geometria delle varietà, corrispondenza tra gli enti geometrici [...] da 64 funzioni; ha particolare importanza il caso in cui la parte antisimmetrica dell'a. si annulla, come nelle varietàriemanniane, e rimangono solo 40 componenti; la parte antisimmetrica ha un ruolo importante nelle teorie unitarie (v. unificazione ...
Leggi Tutto
simboli di Christoffel
Gilberto Bini
Sia M una varietà dotata di una metrica riemanniana. Ricordiamo che essa si può esprimere localmente nella forma
dove (gik) è una matrice n×n hermitiana definita [...] -Civita, un operatore molto importante che fornisce un metodo per valutare la velocità con cui i vettori e i tensori variano sulla varietà. In simboli, l’operatore ∇ dato da
prende il nome di connessione di Levi-Civita.
→ Geometria differenziale ...
Leggi Tutto
INTEGRALE ARMONICO
Mario BENEDICTY
Le forme armoniche e i loro i. sono ampie generalizzazioni delle fuuzioni armoniche, come sono intese nella teoria classica delle funzioni; queste, com'è ben noto, [...] di dare la definizione di forme armoniche e delle loro estensioni sono: a) una varietà M di dimensione n e di classe u, compatta, orientabile, dotata di una metrica riemanniana gijdxidxj; i tensori Tab...pq... definiti su M, con le loro operazioni ...
Leggi Tutto
Kodaira, Kunihiko
Luca Dell'Aglio
Matematico giapponese, nato a Tokyo il 16 marzo 1915 e morto a Kofu (prefettura di Yamanashi) il 26 luglio 1997. Dopo essersi laureato in matematica (1938) e in fisica [...] collaborazione con D.C. Spencer, una teoria generale delle deformazioni di strutture complesse su varietà compatte, che estendeva l'idea riemanniana di moduli di superfici di Riemann. In seguito si occupò prevalentemente dello studio delle superfici ...
Leggi Tutto