Scienza greco-romana. L'astronomia dopo Tolomeo
L’astronomia dopo Tolomeo
Tolomeo rappresenta il culmine dell’astronomia greco-romana e, per certi aspetti, segna anche la fine del suo sviluppo. Obiettivo centrale dell’Almagesto tolemaico è ipotizzare modelli cinematici dei moti celesti, quantificare questi modelli mediante il calcolo dei dati osservativi e dimostrarne la validità, grazie alla loro capacità di riprodurre i fenomeni considerati. Nulla prova che, dopo Tolomeo, qualcuno abbia dato seguito a questo programma; nessuno sembra aver proposto un’alternativa o una sostanziale modifica ai metodi tolemaici di previsione delle posizioni e dei fenomeni celesti desunti da tali modelli. Se vi furono innovazioni successive in tal senso, esse non lasciarono impronte riconoscibili né sulle pratiche coeve del calcolo astronomico, quali ci sono note dai resti archeologici, né nella letteratura astronomica bizantina. Non si può escludere la possibilità che alcuni antecedenti greci dell’astronomia indiana medievale (v. oltre, par. 2), per quanto apparentemente non influenzati dall’opera di Tolomeo, appartenessero al II sec. d.C. od oltre.
L’astronomia antica non era soltanto un’impresa speculativa; come la medicina, essa era una scienza con applicazioni pratiche nella vita di tutti i giorni, e tali applicazioni non cessarono semplicemente perché i principali problemi teorici sembrarono risolti. Alcune delle applicazioni che diedero origine alle prime fasi dell’astronomia greca, come le previsioni del tempo calendaristiche e astronomiche, sembra siano scemate d’importanza dopo il periodo ellenistico; il loro spazio fu però ampiamente riconquistato dalla rapida diffusione dell’astrologia. I manuali astrologici, e soprattutto i documenti papiracei ‘restituiti’ dall’Egitto romano, rivelano infatti che dal I sec. a.C. al VI d.C. fiorì una tradizione di astronomia predittiva al servizio dell’astrologia che riuscì a inglobare al suo interno le tavole tolemaiche. Ancor più, se le opere di Tolomeo non ebbero una progenie consimile, divennero però oggetto di studio di per sé. Nel giro di un secolo e mezzo dalla sua stesura, l’Almagesto era letto come testo scolastico e svolgeva per l’astronomia, nell’educazione umanistica, pressappoco lo stesso ruolo che gli Elementi di Euclide ricoprivano nella matematica. Sia lo studente che si cimentava con le difficoltà del ragionamento deduttivo di Tolomeo, sia l’astronomo alle prese con le complesse tavole predittive, avevano bisogno entrambi di un apparato di commenti esplicativi. Questa voluminosa letteratura, che rese l’Almagesto e le Tavole manuali comprensibili e utili a uomini assai distanti dal tempo e dal contesto intellettuale di Tolomeo, esercitò una profonda influenza sul corso dell’astronomia medievale.
Sino al XIX sec. la documentazione relativa all’astronomia greca consisteva interamente di opere – per lo più trattati teorici o didattici – pervenute in copie e traduzioni medievali. Questa tradizione diretta, assai limitata nella selezione degli autori – vi predominano gli scritti di Tolomeo e dei suoi più tardi commentatori – è stata integrata dai passi astronomici presenti nei testi astrologici greci e dalla letteratura astronomica dell’India (sebbene si debba ammettere che queste fonti indirette, quando attestano concetti e metodi assenti in Tolomeo, sollevano più questioni di quante ne risolvano). In questa situazione, la crescente disponibilità di documenti astronomici recuperati dall’Antichità è per lo storico un fatto di grande importanza. I documenti in questione sono costituiti principalmente da frammenti di rotoli papiracei e di codici (occasionalmente altri supporti come óstraka e tavolette lignee) scavati o rinvenuti in vari siti egizi. In grande maggioranza provengono dalla cittadina greco-romana di Ossirinco (presso l’odierna Baḥnasa), sito che ha conservato il numero di gran lunga maggiore di papiri documentari e letterari del periodo romano. Le altre provenienze note includono due complessi di templi di Fayyum; le condizioni climatiche hanno impedito la sopravvivenza dei papiri del Basso Egitto, per esempio ad Alessandria e in altre zone dell’Impero romano.
I papiri astronomici sono scritti per lo più in greco, talvolta in demotico (l’uso del demotico cessò dopo il II sec. d.C.). Molti possono essere datati esattamente in base ai loro contenuti; essi coprono un periodo che va dal I sec. a.C. all’inizio del VI d.C., ma il maggior numero appartiene al II e al III secolo. Tale distribuzione cronologica coincide largamente con quella più generale dei papiri nei siti di ritrovamento, così da dare l’impressione di un livello alquanto uniforme di attività astronomica durante quest’intero arco di tempo, forse con un declino percepibile nell’ultimo periodo. Sono sinora venuti alla luce circa duecento papiri astronomici e un analogo numero di oroscopi personali, contenenti dati astronomici. In quasi tutti i papiri astronomici ci sono alcune applicazioni astrologiche, che li fanno apparire come testi appartenenti a cultori di questo sapere. Tranne nel caso in cui comportano elementi chiaramente egizi – il che è raro –, si può presumere con una certa sicurezza che rappresentino bene lo strumentario astrologico dell’intero mondo grecoromano. Sappiamo infatti che lo scrittore di astrologia Vettio Valente, attivo ad Antiochia nel tardo II sec., usò tavole molto simili a quelle sopravvissute nei papiri. Sembra siano state praticate, per quanto in modo diseguale, tre forme di astrologia, ciascuna con specifiche esigenze astronomiche: la cosiddetta astrologia ‘generale’, che ricavava previsioni locali dai prodigi celesti; l’astrologia ‘catarchica’, che stabiliva quale momento fosse propizio o sfavorevole per dare inizio a un’attività; l’astrologia oroscopica individuale. L’astrologia generale del periodo romano deriva in definitiva dai testi mesopotamici del I millennio a.C. sui presagi celesti; questa tradizione è però successivamente passata attraverso un filtro egizio.
L’astrologia generale greco-egiziana prestava attenzione a una serie piuttosto limitata di eventi ominosi, tra i quali principalmente le eclissi lunari e solari e la configurazione dei corpi celesti nello Zodiaco alla prima comparsa di Sirio. L’importanza inizialmente attribuita all’osservazione del presagio come base per la predizione aveva ceduto quasi completamente il passo alla fiducia nei calcoli. Ciò si riflette nei canoni, o liste di previsioni di eclissi successive, contenenti un elenco delle circostanze ominose significative (come i tempi e le direzioni dell’oscuramento) perfettamente corrispondenti a quei fenomeni di cui Tolomeo, nell’Almagesto, mostrava i modi di predizione. Le liste delle eclissi, che esistevano già prima di Tolomeo, erano ancora redatte all’epoca di Proclo (V sec.).
L’astrologia catarchica consisteva soprattutto nella valutazione dei giorni fausti o infausti per intraprendere un’attività, specifica o generica. Le determinanti più significative erano le posizioni rispettive della Luna e dei pianeti nello Zodiaco. Questa forma di astrologia costituiva probabilmente l’applicazione programmatica delle numerose ‘effemeridi’, tabelle dall’organizzazione calendaristica in cui erano elencate le posizioni giornaliere della Luna e dei cinque pianeti, incolonnate sia giorno per giorno sia secondo date significative del loro moto (per es., date di inizio e di fine della visibilità e del transito da un segno zodiacale all’altro). Nelle effemeridi più tarde, a partire dal V sec., apparvero colonne che determinavano esplicitamente la valutazione del giorno. L’astrologia catarchica si basava sul presupposto di poter conoscere i dati significativi in anticipo rispetto alla data cui si riferivano; è quindi ovvio che tutte le posizioni e le date astronomiche significative fossero calcolate e non osservate.
I dati astronomici considerati in relazione a un oroscopo individuale, ossia allo scopo di predire il carattere e il destino di una persona, includevano la posizione zodiacale del Sole, della Luna e dei pianeti, nonché la situazione dello Zodiaco rispetto all’orizzonte locale, al momento della nascita. Queste informazioni, pur se – com’è ovvio – compilate dopo la data in questione, erano ancora totalmente desunte da calcoli. La grande maggioranza degli oroscopi pervenuti specificano soltanto i segni zodiacali occupati dai corpi celesti e i punti di ascensione sull’eclittica, ed è per questi semplici oroscopi che era prodotta la varietà più comune di almanacchi, in cui erano elencate, giorno per giorno, le date in cui ciascun pianeta transitava da un segno all’altro. Per formulare uno degli oroscopi più raffinati, in cui le posizioni erano rese in gradi e minuti, bisognava aver utilizzato tavole che permettevano di calcolare le posizioni planetarie in date arbitrarie. Una determinazione precisa dell’ascendente avrebbe altresì richiesto una tavola di ascensioni oblique per una data latitudine terrestre.
L’astronomia presente nelle fonti documentarie è un’astronomia strettamente predittiva e matematica, in cui l’osservazione e le spiegazioni teoriche non svolgono un ruolo diretto. Più specificamente, essa doveva essere in grado di predire con precisione, in gradi e frazioni sessagesimali di grado, le longitudini zodiacali dei corpi celesti in date arbitrarie del passato e del futuro, le date dei fenomeni planetari, le date e le caratteristiche delle eclissi, e le ascensioni. Il fatto che l’Almagesto e le Tavole manuali di Tolomeo contenessero tabelle strettamente corrispondenti a questa lista di desiderata non è casuale. Tolomeo evidentemente voleva che la sua compilazione di tavole rispondesse alle normali necessità di chi praticava l’astrologia al suo tempo. In altri termini, nei papiri l’impatto dei lavori di Tolomeo si registra non tanto al livello superficiale delle varie predizioni che contengono, quanto al livello più profondo dei metodi di computo e dei modelli e parametri adottati.
I frutti dell’astronomia tolemaica divennero di pubblica conoscenza all’incirca dalla seconda metà del II secolo. Nessuno dei suoi contemporanei fa menzione di Tolomeo (a meno che l’inclusione di Tolomeo come «re d’Egitto» in un elenco di astronomi famosi, nella versione araba di uno dei libri di Galeno, sia il travisamento di un riferimento autentico, e non una totale interpolazione). Ciò nondimeno si hanno buoni motivi per ritenere che sia l’Almagesto, sia le Tavole manuali fossero già ben conosciute all’inizio del III secolo. Le ragioni del successo immediato e del definitivo primato di queste opere sono riconducibili alle caratteristiche dell’astronomia pratica e teorica del tempo in cui esse apparvero; tuttavia le nostre fonti illuminano solamente piccoli settori della situazione complessiva e ciascuno di essi suggerisce un quadro più vasto che non sempre collima con gli altri.
I riferimenti di Tolomeo ai contemporanei e ai suoi immediati predecessori, pur essendo indiretti, rivelano l’esistenza, intorno alla metà del II sec., di un’astronomia abbastanza sviluppata, basata su modelli cinematici che comportavano il ricorso a epicicli ed eccentrici. I modelli prevalenti erano plausibilmente per il Sole e la Luna semplici epicicli ed eccentrici, che davano conto di una singola anomalia periodica; l’anomalia lunare secondaria o non era riconosciuta, o non era compresa abbastanza da essere riprodotta in modo soddisfacente nel modello lunare. In un famoso brano sulla metodologia per determinare i modelli per i pianeti, Tolomeo afferma che i suoi predecessori avevano usato sia modelli che comportavano gli epicicli o gli eccentrici, sia «anche una combinazione dei due», il che significa che stavano cercando di riprodurre le due principali anomalie planetarie. Ma egli lascia intendere anche che i loro modelli non erano in grado di rappresentare tutti i fenomeni planetari identificati e con ciò egli probabilmente alludeva agli intervalli tra la loro prima e ultima visibilità e le stazioni. L’equante, almeno nella forma in cui è applicato negli eccentrici planetari di Tolomeo, e le complesse oscillazioni latitudinali dei modelli dei pianeti, sono generalmente considerate innovazioni tolemaiche. Riguardo all’astronomia predittiva dei suoi predecessori, per esempio sulla struttura delle loro tavole, Tolomeo ha poco da dire, e quel poco è irrimediabilmente oscuro.
Alcuni dei primi trattati indiani presentano un’astronomia cinematica di evidente origine greca, che per molti aspetti sembra rispecchiare le condizioni proprie del periodo anteriore a Tolomeo, quali si desumono dall’Almagesto. Le caratteristiche in questione includono l’ampia applicazione dei modelli epiciclici ed eccentrici semplici e combinati, la conoscenza di una singola anomalia lunare e di una doppia anomalia planetaria senza ricorrere all’equante tolemaico (è stato tuttavia osservato che certi modelli indiani riflettono sia un differente tipo di equante, sia una conoscenza dei fenomeni che portarono all’equante tolemaico). I parametri numerici, tranne rare eccezioni, sono diversi da quelli di Tolomeo, e talvolta di precisione maggiore. Le tavole predittive indiane sono di regola meno sofisticate di quelle tolemaiche, ma fanno ugualmente uso di funzioni trigonometriche e della distinzione tra moto principale e anomalie. D’altro lato, alcuni testi indiani presentano un repertorio di metodi predittivi aritmetici che utilizzano strutture a base non geometrica secondo modelli astronomici babilonesi (per es., le cosiddette funzioni a zig-zag e le partizioni dell’eclittica in zone di fenomeni divisi uniformemente) e, occasionalmente, perfino parametri babilonesi (v. Sezione Vicino Oriente antico, cap. XIII, par. 3).
I papiri rivelano che anche questa seconda tradizione, aritmetica, arrivò in India da fonti greche, e che – contrariamente a ogni aspettativa – il suo uso era molto più diffuso di quello della tradizione cinematica, almeno in Egitto. In pratica, a quanto sembra, gli astrologi del tempo di Tolomeo avevano dimestichezza con l’intera gamma dei metodi predittivi dei moti planetari e lunari a noi noti dalle tavolette degli ultimi tre secoli prima di Cristo ed era per mezzo di tali procedure, spesso con minimi adattamenti al calendario egizio, che essi probabilmente compilavano oroscopi o almanacchi. Le tracce di un’astronomia cinematica indipendente dalle tavole tolemaiche sono più tenui, ancorché sufficienti a dimostrare che erano disponibili alcune tavole semplici, in cui si faceva riferimento ai moti principali e alle anomalie. La diffusione delle opere di Tolomeo, alla fine del II sec. e nel III, deve quindi aver avuto luogo su due piani distinti; da un lato, la sua autorevolezza teorica e dimostrativa doveva imporsi sui sistemi cinematici rivali, come quelli sopravvissuti in forma modificata in India, e, d’altro lato, i suoi metodi predittivi e le sue tavole affrontavano una tradizione aritmetica, più o meno di derivazione babilonese, che i precedenti ideatori di modelli cinematici non erano riusciti a scalfire.
Sulla base dei papiri si può ricostruire il modo in cui le tavole tolemaiche gradualmente acquisirono la supremazia come strumenti di previsione. Il più antico papiro a noi noto contenente tavole desunte dalle opere tolemaiche fu scritto, secondo una datazione paleografica, uno o due decenni dopo il 200. Cosa interessante, le tavole del papiro non corrispondono esattamente a quelle dell’Almagesto o delle Tavole manuali, ma sembrano compilate da un autore che attingeva a entrambi i lavori. Sono state poi scoperte parti di varie altre raccolte di tavole tolemaiche, redatte nel corso dei tre secoli successivi. Nella maggior parte dei casi sembra si tratti di manoscritti delle Tavole manuali, per lo più nella forma in cui quest’opera si è trasmessa nelle copie medievali. Nel corso del III sec., un numero sempre crescente di almanacchi sembra essere stato desunto dalle Tavole manuali. Per contro, le tavole che riflettevano i metodi babilonesi diventarono progressivamente più rare, anche se gli ultimi esempi sono tardivi e risalgono al IV secolo. Nel V sec. Tolomeo sembra ormai tenere il campo dell’astronomia predittiva.
Gli almanacchi basati sulle tavole tolemaiche presentano una caratteristica interessante e storicamente significativa: se si calcolano di nuovo le posizioni dei corpi celesti per le stesse date usando le Tavole manuali, si ha sempre una differenza costante nella longitudine rispetto alle posizioni registrate negli almanacchi. L’eccedenza d delle tavole rispetto alle longitudini così calcolate diminuisce lentamente nelle date più tarde e può essere calcolata, in gradi, mediante la relazione d°=8-(Y/80), dove Y è il numero degli anni trascorsi dal 158 a.C. L’effetto di questa formula è di tradurre le longitudini solari tropiche di Tolomeo (da considerarsi relative alle intersezioni dell’equatore con l’eclittica, come assunto dal suo modello) in longitudini siderali (relative alle stelle fisse). L’uso diffuso di questa formula nei secc. III e IV è indice del fatto che, in primo luogo, gli astrologi non erano convinti dal tentativo tolemaico di dimostrare la precessione degli equinozi, e, in secondo luogo, della presenza di qualche canale a noi sconosciuto mediante il quale essi tutti ricevettero le tavole tolemaiche, che sovvertì i chiari intendimenti di Tolomeo su questo punto saliente.
Sfortunatamente i papiri non ci forniscono alcun indizio sul perché questa metodologia aritmetica, tecnicamente più semplice e apparentemente adeguata, finì per essere abbandonata in favore delle complicate tavole tolemaiche. Sinora nei papiri non è stato rinvenuto nessun frammento dell’Almagesto; sembra così che pochi astrologi abbiano letto l’opera in prima persona e siano rimasti convinti della validità delle tavole in forza della sua argomentazione deduttiva. Tuttavia, non fu certo estranea alla loro diffusione e adozione generalizzata la conoscenza del fatto che Tolomeo avesse fondato le sue tavole su un accurato quadro logico di ipotesi e di prove. In ogni caso, tutti coloro che leggevano l’Almagesto concordavano necessariamente con tutto quel che vi si trovava. Oltre alle prove del rifiuto della teoria tolemaica della precessione, di cui si è già detto, abbiamo una breve ed enigmatica citazione di un altrimenti sconosciuto Artemidoro (200 ca.), che accusò Tolomeo di aver costruito il suo modello lunare usando in modo incongruo i dati numerici e, a quanto sembra, sulla base di uno strumento osservativo insufficiente. La descrizione che Artemidoro fa della metodologia di Tolomeo non è certo generosa, ma è rilevante che l’aspetto del modello lunare che egli sembra criticare sia l’orientamento dell’apogeo dell’epiciclo, e cioè uno dei due luoghi in cui Tolomeo transige sull’assioma del moto circolare uniforme. Il testo di Artemidoro ci è pervenuto in un singolare frammento di un commentario alle tavole tolemaiche del quale sono sopravvissute soltanto poche pagine, grazie alla loro casuale inserzione nel manoscritto di un trattato astrologico. Il commentario contiene un esempio di calcolo astronomico relativo al 213, talché il testo quasi certamente appartiene alla prima metà del III secolo. La sequenza degli argomenti è alquanto disordinata, ma se il frammento è rappresentativo della totalità perduta, allora il commentario doveva essere un tentativo di spiegare l’impostazione delle Tavole manuali e la loro relazione con l’Almagesto e con i soggiacenti modelli cinematici. A parte la strana circostanza per cui lo sconosciuto autore cita la critica di Artemidoro senza aggiungere nessuna nota a difesa di Tolomeo, un secondo tratto notevole del frammento è lo sforzo di chiarire alcuni termini tecnici mediante una lunga citazione di un altro astronomo (Apollinario), anteriore a Tolomeo. Se ne trae l’impressione complessiva che Tolomeo fosse ritenuto parte di una tradizione astronomica ancora viva.
Il commentario divenne un genere importante della letteratura astronomica nel periodo successivo a Tolomeo, apparentemente in risposta alle difficoltà di comprensione e di applicazione suscitate dalle opere tolemaiche. A meno che non si vogliano considerare commentari i prontuari che fornivano istruzioni per il calcolo e l’uso delle tavole numeriche, il solo testo astronomico ad aver attirato commentatori prima dei testi tolemaici sembra essere stato il poema di Arato di Soli; e in quella tradizione l’enfasi era posta sulla critica letteraria e la polemica dotta, elementi per lo più assenti dai commentari astronomici della Tarda Antichità. Il generico qualificativo ‘didattici’ convenzionalmente applicato ai commentari all’Almagesto e alle Tavole manuali non dovrebbe indurre a trascurare il fatto che erano rivolti a diversi tipi di lettori e occasionati da svariati problemi. Nel caso delle Tavole manuali il problema iniziale era come usare le tavole per calcolare posizioni e altri fenomeni. Tolomeo scrisse in effetti una breve introduzione pratica alle tavole, che ci è pervenuta sotto il titolo Ordinamento e calcolo delle tavole manuali, ma, sebbene egli menzioni ogni passo necessario all’uso delle singole tavole, le istruzioni sono così scarne da risultare di assai difficile comprensione per un principiante e non forniscono al lettore esempi concreti. Qualche copia medievale delle Tavole manuali include questa introduzione, ma per lo più sembra che le tradizioni del testo e delle tavole siano state indipendenti.
Che sia perché le istruzioni dello stesso Tolomeo erano insufficienti, o perché erano difficili da seguire, altri autori si accinsero al compito di scrivere manuali pratici per le Tavole manuali. Nei papiri restano i frammenti di due di tali lavori e la parte che si è conservata di uno di essi (copiato nel IV sec.) affronta con grande semplicità e ampio respiro il problema delle conversioni di tempo necessarie a tradurre un dato tempo locale, espresso in ore stagionali (calcolate dal sorgere o tramontare del Sole e variabili quanto alla lunghezza), nel tempo medio di Alessandria delle tavole tolemaiche. A ogni sezione fa seguito un esempio concreto, come nel caso della conversione dal tempo locale di Roma a quello di Alessandria. L’altro frammento conserva istruzioni per le latitudini planetarie delle tavole tolemaiche, con un esempio pratico per l’anno 352; come in altri testi analoghi, è verosimile che la data dell’esempio sia prossima a quella di composizione dell’opera, e di conseguenza ci troveremmo di fronte a un ignoto commentatore attivo soltanto un decennio prima di Teone di Alessandria.
I commentatori del IV sec. di cui conosciamo l’identità sono Pappo di Alessandria, Teone di Alessandria e sua figlia Ipazia (m. 415); dato che tutti e tre furono attivi ad Alessandria, sembra plausibile individuare tra di loro una successione intellettuale. Circa quarant’anni separano la sola data certa riferibile a Pappo (320) e la prima data testimoniata negli scritti di Teone che possa rientrare nell’arco della sua attività (360). La durata di questo intervallo rende difficile, sebbene non impossibile, ipotizzare che Teone sia stato allievo di Pappo; egli certamente adattò nel suo commentario all’Almagesto parti dell’analogo lavoro di Pappo, ma senza mai citarne il nome. Tutti e tre gli autori sono indicati nelle fonti antiche come ‘filosofi’, un termine che all’epoca non sarebbe suonato improprio per uno specialista di scienze matematiche. Soltanto per Ipazia testimonianze attendibili suggeriscono un interesse rilevante per la metafisica e l’etica. L’influenza che essa esercitò nell’insegnamento, tanto matematico quanto filosofico, può essere avvertita nelle lettere del suo allievo Sinesio di Cirene, che divenne vescovo della cattedra di Cirene probabilmente nel 411 e morì due anni prima che Ipazia venisse assassinata da una turba di cristiani, vittima di una faida politica. Tuttavia Sinesio – a giudicare da una sua lettera a Peonio, retorica e piuttosto oscura, in cui descrive il dono di un astrolabio piano – non ricavò dai suoi studi che una limitata padronanza tecnica dell’astronomia.
Il cosiddetto Commentario minore alle Tavole manuali di Teone di Alessandria sembra di primo acchito l’ultimo dei tre commentari composti da questo autore, dato che la prefazione (indirizzata allo stesso allievo – «figlio» – Epifanio che è il dedicatario del commentario di Teone all’Almagesto e del IV libro del suo Commentario maggiore) fa riferimento al Commentario maggiore, così come la prefazione di quest’ultimo fa riferimento al commentario all’Almagesto. Tuttavia, nella versione superstite la cronologia dei tre commentari è avviluppata in un tale groviglio di riferimenti circolari e di revisioni che la sola conclusione realmente possibile è che Teone passò il resto della sua vita a modificare i suoi scritti principali. Vari capitoli iniziali del Commentario minore sono illustrati da esempi pratici per l’anno 360 e la scelta della data, arbitraria, probabilmente si riferisce al periodo in cui Teone compose questi capitoli. Un esempio calcolato per il 377 sembra essere un’aggiunta successiva.
Teone scrive nella prefazione (cap. I, ed. Tihon, p. 199) che «la maggior parte di coloro che ci si avvicinano per essere istruiti su questo soggetto [cioè sulle Tavole manuali], oltre a non essere capaci di seguire le moltiplicazioni e le divisioni dei numeri in modo soddisfacente, dimostrano anche d’ignorare completamente le dimostrazioni geometriche». È per questo pubblico che egli compose il Commentario minore, con lo scopo pratico di spiegare come usare le Tavole manuali per l’intera gamma di previsioni di cui abbisognava un astrologo. L’opera consegue il risultato con molta efficacia e chiarezza, ed è senza dubbio a motivo della sua superiorità rispetto agli altri commentari che fu ampiamente copiato durante il Medioevo (ne esistono oltre 50 manoscritti). Teone sembra aver originariamente fornito soltanto degli esempi per le operazioni basilari di conversione del tempo e di computo dell’ascendente, del punto d’intersezione dell’eclittica sul meridiano e delle longitudini dei corpi celesti, ovvero proprio per quei calcoli necessari a formulare un oroscopo. Computi più complessi o meno richiesti, quali quelli per le eclissi o le latitudini planetarie e le condizioni di visibilità sono descritti senza esempi; in uno o due casi la carenza venne successivamente colmata, ma non è certo se per opera dello stesso Teone.
Il Commentario minore contiene un solo capitolo che va oltre il semplice compito di spiegare l’uso delle tavole tolemaiche, ma quest’unico capitolo ha avuto un’enorme influenza sull’astronomia successiva. Teone vi scrive che gli «astrologi del tempo passato» applicavano la formula d°=8-(Y/80), ricordata nel par. precedente, che, a quel che si è visto nelle fonti papiracee, era usata per convertire le longitudini solari tropiche di Tolomeo in longitudini siderali. Teone sostiene che questa formula era stata concepita in base a una particolare teoria, secondo la quale le intersezioni dell’equatore e dell’eclittica erano ritenute oscillare lentamente, in avanti e all’indietro, entro un intervallo di 8°; questo passaggio ispirò la teoria della ‘trepidazione degli equinozi’ nell’astronomia araba medievale e in quella europea successiva.
Il lessico bizantino del X sec. noto come Suda porta tra gli scritti di Ipazia un «kanṓn (‘tavola’) astronomico». Poiché appare improbabile che Ipazia abbia composto delle tavole originali, l’interpretazione corrente è che tale scritto sia, come altre opere elencate nella Suda, un commentario e che il ‘canone’ sia da identificare con le Tavole manuali; nient’altro è noto poi di questo libro.
Due commentari (in senso proprio) all’Almagesto si sono parzialmente conservati nella loro forma originaria: quello di Pappo, relativo ai libri V e VI, e quello di Teone su tutti i tredici libri, tranne il V e l’XI. Non è sopravvissuta nessuna raccolta completa, e si hanno soltanto riferimenti di seconda mano e in taluni casi citazioni abbastanza estese delle parti perdute.
A giudicare dal solo esempio datato nei libri superstiti, che si riferisce al 18 ottobre 320, sembra che Pappo abbia scritto il suo commentario intorno a quest’anno. Questa era in effetti la data di un’eclissi parziale di Sole, visibile ad Alessandria, sebbene sorprendentemente Pappo non menzioni il fatto. Il commentario di Teone, a sua volta, può essere datato sommariamente, poiché include un calcolo delle congiunture di due eclissi del 364 osservate dall’autore. Altrove Teone ha inserito esempi di calcoli delle longitudini del Sole e della Luna per il 5 gennaio 323, che sembrano adattati da un opuscolo indipendente (forse di Pappo? Oppure l’oroscopo dello stesso Teone?). È un vero peccato che l’inizio del commentario di Pappo, dove l’autore presumibilmente spiegava a quale pubblico si rivolgeva e con quali intenti, non si sia conservato; ma il suo commentario e quello di Teone presentano talmente tante caratteristiche simili da farci ritenere che entrambi scaturissero da identiche circostanze. Teone scrive di averne intrapreso la scrittura sollecitato dagli studenti a chiarire le difficoltà incontrate nell’Almagesto di Tolomeo. Non sembra che egli si riferisse a una ‘scolaresca’ o, più genericamente, a delle conferenze, bensì a un continuo assedio da parte di studenti che leggevano l’Almagesto per proprio conto. Gli allievi avevano ambizioni differenti, dato che Teone dice di essere interessato «al tirocinio degli astronomi e all’incitamento degli studenti di matematica». Questi ultimi probabilmente avevano studiato gli Elementi di Euclide e stavano affrontando l’Almagesto come opera dai contenuti matematici più avanzati, mentre i primi dovrebbero essere stati astrologi, a proposito dei quali Teone non si aspetta un grosso interesse per gli aspetti filosofici dell’Almagesto.
In pratica sia Pappo sia Teone sono attenti soprattutto alle singole dimostrazioni geometriche e aritmetiche. Pagine e pagine sono dedicate a citazioni, parafrasi e ampliamenti delle proposizioni di Tolomeo, laddove il commentatore le riteneva troppo ellittiche per essere afferrate dagli studenti. Pappo e Teone fanno per l’Almagesto la stessa cosa che lo stesso Pappo fa, in alcune parti della sua Collezione matematica, per i trattati geometrici di Apollonio di Perge e di Euclide e per altri testi di studio, ossia arricchire di dimostrazioni supplementari i passaggi che gli autori consideravano ovvi, trattare altri casi laddove l’autore ne presentava soltanto uno, aggiungere prove alternative. D’altra parte né Pappo né Teone mostrano molto interesse per il più vasto disegno dell’Almagesto. Bastava che lo studente potesse giustificare ogni passaggio del ragionamento, senza preoccuparsi troppo della conclusione cui era condotto e del perché. Teone dunque fa poco più che parafrasare i contenuti dei capitoli che affrontano problemi fondamentali della metodologia scientifica. Soltanto molto raramente Pappo o Teone inseriscono informazioni desunte da autori precedenti, esclusivamente per chiarire o giustificare le affermazioni di Tolomeo.
Nel complesso, Pappo sembra essere stato più incline di Teone a cercare al di fuori del testo di Tolomeo materiali in grado di gettare qualche luce sull’argomento. Laddove Tolomeo avanza delle critiche al trattato di Ipparco Sulle grandezze e le distanze del Sole e della Luna, Pappo fornisce numerosi dettagli che permettono agli studiosi moderni di ricostruire l’essenziale di questo libro, perduto. Egli arricchisce anche la descrizione della sfera armillare di Tolomeo, non è chiaro però con quanta competenza ed esattezza. D’altro lato, sembra che siano dovuti a interventi di Pappo certi dettagli apparentemente tratti dai lavori perduti di Ipparco sulle parallassi. Il solo inserimento significativo di materiale non tolemaico nel commentario di Teone, invece, è motivato dall’asserzione di Tolomeo secondo cui il cerchio è la figura dall’area più grande in relazione a un perimetro dato; qui Teone inserisce una dimostrazione di questa proprietà tratta dal geometra ellenistico Zenodoro.
Nessuno dei due commentatori mostra alcun interesse per il contesto storico dell’Almagesto, o per l’ampliamento e il perfezionamento delle ricerche tolemaiche mediante nuove osservazioni, anche se tale possibilità era indicata da Tolomeo stesso, in apertura e in chiusura dei capitoli del trattato. Non si trattava di istruire il lettore su come diventare un astronomo nel senso in cui lo erano Ipparco e Tolomeo. All’interno dei limiti più esigui che essi si proposero, Teone dimostra di essere il commentatore più diligente e affidabile: perde poche opportunità di esegesi e d’illustrazione, e commette pochi errori. Pappo, e forse Teone, spiegarono agli studenti più interessati alla matematica anche una serie di opere astronomiche minori alle quali sembra ci si riferisse complessivamente come alla «Piccola Astronomia», o al «Piccolo Astronomo». Queste comprendevano la maggior parte dei lavori esistenti sulle sferiche, il Sulle grandezze e le distanze del Sole e della Luna di Aristarco di Samo, e l’Ottica di Euclide. Le aggiunte e le annotazioni matematiche di Pappo a molti di questi lavori si trovano nel Libro VI della sua Collezione. Il valore pedagogico di questo programma di studi come introduzione all’Almagesto è discutibile, tuttavia si riflette nell’accorpamento di questi lavori nei manoscritti medievali.
Un’altra categoria di commentari a Tolomeo, che riguarda sia l’Almagesto sia le Tavole manuali sia la loro relazione reciproca, è esemplificata dal cosiddetto Commentario maggiore di Teone alle Tavole manuali. Teone asserisce di non aver visto nulla di simile da parte dei suoi predecessori; ciò sorprende, poiché il commentario frammentario del III sec. – che si è precedentemente esaminato – affronta proprio tali argomenti. Se Teone avesse conosciuto quel lavoro avrebbe potuto scegliere d’ignorarlo a causa della sua disorganizzazione e della dubbia competenza tecnica. Per contro, egli ha un’idea chiarissima di che cosa si propone il suo Commentario maggiore: scrive infatti di aver iniziato questo trattato in cinque libri (di cui rimangono soltanto i primi tre e l’inizio del quarto) in risposta alla richiesta rivoltagli dai suoi dedicatari, Eulalio e Origene, di una «introduzione ragionata» alle Tavole manuali. Teone vede il suo lavoro come contributo alla scienza teorica, ma anche come applicazione pratica: per quanto la sua esposizione dei modelli soggiacenti alle Tavole manuali sia di interesse puramente intellettuale, la spiegazione della derivazione aritmetica delle tavole avrebbe permesso al lettore di verificare e correggere la copia in suo possesso.
Il risultato è un commentario piuttosto inusuale. In un certo senso Teone cerca di ricostruire l’Almagesto come sarebbe stato scritto se le tavole che contiene fossero state quelle delle Tavole manuali. Ma certamente la situazione di Teone non era paragonabile a quella di Tolomeo; laddove questi derivava nuove tavole dai modelli che lui stesso aveva verificato e precisato mediante osservazioni, Teone doveva mostrare come un insieme di tavole preesistente potesse essere desunto dai modelli dell’Almagesto. Se da una parte Teone non aveva bisogno di giustificare empiricamente i modelli, dall’altra doveva ricostruire, a quanto pare senza assolutamente nessuna prova documentaria, i passaggi perduti che portavano sia da una tavola dell’Almagesto a quella corrispondente nelle Tavole manuali sia direttamente dal modello dell’Almagesto alla tavola pertinente nelle Tavole manuali. Teone si trova, in altre parole, ad affrontare un problema di analisi storica di testi scientifici del tutto analogo a quello che può porsi la ricerca moderna. I commentari di Teone e di Pappo risultano così composizioni dissimili. Il Commentario minore di Teone poteva essere rivolto a uno degli autori cui si devono molti dei papiri astronomici: l’astrologo che non si accontentava di affidarsi agli almanacchi pubblicati per i dati dei suoi oroscopi e aveva appreso che i metodi astronomici di previsione, gli attrezzi del mestiere, erano stati soppiantati dalle tavole di Tolomeo, più difficili ma più accurate. Egli sapeva svolgere le operazioni aritmetiche basilari con la numerazione astronomica sessagesimale, ma non aveva né l’inclinazione, né la necessaria preparazione, per seguire le argomentazioni deduttive di Tolomeo.
Nonostante l’immenso sforzo profuso nei commentari all’Almagesto di Pappo e Teone, resta difficile credere che essi trovassero, neppure ad Alessandria, tanti lettori quanto i manuali di istruzioni per le Tavole manuali. Pappo e Teone scrivevano per chi studiava matematica (soprattutto geometria euclidea), talvolta come fine a sé stessa, più spesso come parte di una più ampia educazione umanistica. Nel pezzo polemico che ci è pervenuto come III libro della sua Collezione, Pappo ci dà uno scorcio dell’ambiente in questione quando descrive i suoi incontri con una serie di allievi principianti, che erano arrivati a studiare geometria con lui dopo un primo avviamento alla materia con un altro insegnante (che risulta essere – cosa interessante – una donna). Un discepolo fuori del comune, quale l’Epifanio di Teone, potrebbe aver avuto il privilegio della dedica di un commentario, come capitò a Epifanio stesso. Quanto al Commentario maggiore, ci si domanda se mai trovò un lettore che abbia provato tanto piacere ad averne la piena padronanza, quanto Teone deve averne provato a redigerlo; sopravvisse durante il Medioevo grazie a un’unica copia, e dei commentari di Teone è quello il cui testo è più lacunoso.
La moderna storiografia ha spesso individuato in Teone l’autore, o almeno il revisore, delle Tavole manuali quali si ritrovano nei manoscritti medievali, ma un attento esame del Commentario maggiore ha demolito questo assunto. Teone comprese perfettamente i principi sottostanti queste tavole, che erano diversissime dalle versioni dell’Almagesto, tanto da poterle produrre, non menzionando poi mai alcuna modifica da lui apportata alla struttura o al contenuto delle tavole. Ovviamente il Commentario maggiore mostra che egli era interessato a trovare qualche modo di correggere il testo recepito delle Tavole manuali, ma non ci sono prove che egli abbia mai designato come ‘edizione’ un qualsiasi particolare manoscritto corretto. Secondo un’ipotesi recente il suo commentario all’Almagesto si accompagnava a una speciale recensio del trattato tolemaico, preparata congiuntamente da lui e dalla figlia Ipazia. Tale ipotesi si basa però su una discutibile interpretazione di certe affermazioni che nei manoscritti precedono le sezioni del commentario, secondo le quali Teone o Ipazia avrebbero corretto personalmente la copia. Nel complesso, l’attività di Teone come curatore di testi scientifici è stata di fatto alquanto sopravvalutata.
La tradizione dei manoscritti medievali tendeva a favorire la conservazione delle opere che si riferivano all’Almagesto e alle Tavole manuali; tuttavia sappiamo che sia Pappo sia Teone redassero anche altri scritti astronomici, sebbene ne resti ben poco, oltre ai titoli. Pappo fa riferimento a un commentario all’Analemma di Diodoro di Alessandria, un trattato sulla teoria della meridiana (ugualmente perduto), mentre un suo commentario sul Planispherium di Tolomeo fu presumibilmente tradotto in arabo da Ṯābit ibn Qurra (901) nel IX secolo. Il trattato di Teone sull’astrolabio piano fu preso a modello dalle successive trattazioni della materia. Teone fu anche autore dell’unica osservazione astronomica a noi nota in quei tempi, quella dell’eclisse solare totale del 16 giugno 364.
Nella Tarda Antichità gli esponenti principali dell’astronomia furono i filosofi neoplatonici che si succedettero nelle scuole di Atene e di Alessandria. Vi è poco per presumere che Plotino, il fondatore della tradizione neoplatonica, si interessasse molto alle scienze esatte; il suo discepolo Porfirio fu però l’autore del primo commentario alle opere non astronomiche di Tolomeo che sia sostanzialmente sopravvissuto (Introductio in Ptolemaei Tetrabiblum e In Ptolemaei Harmonica). Porfirio e specialmente il suo discepolo e rivale Giamblico ricercavano però in un pitagorismo risuscitato una fondazione aritmetica della fisica e della metafisica, e tali indagini rimasero a lungo a un livello concettuale, anzi mistico, che praticamente escludeva la padronanza tecnica delle scienze effettive. Proclo, il più importante tra gli scolarchi di Atene, fu il primo a inserire tra le competenze richieste al filosofo nozioni di geometria e astronomia. La prova della conoscenza astronomica di Proclo si ricava dal suo commentario al Timeo di Platone e, soprattutto, dalla sua Astronomicarum positionum hypotyposis (lett.: «schizzo delle teorie astronomiche»). Il piano di quest’ultimo lavoro è unico, e caratteristico della posizione ambigua di Proclo nei confronti della scienza astronomica. Il nucleo, che consiste nell’esposizione dei modelli dell’Almagesto, è incorniciato da un’introduzione e da una conclusione che presentano tali modelli come veri e falsi al contempo. La Hypotyposis era l’adempimento di una promessa che Proclo aveva fatto a un ‘amico’, non identificato, durante un anno di ritiro filosofico passato in Lidia; l’autore lo presenta, con sussiego, come una concessione rispetto ai suoi lavori più elevati.
Proclo non manifesta un senso storico profondo dell’evoluzione dell’astronomia fino a Tolomeo, e forse aveva accesso soltanto a una piccola parte della documentazione da cui tale senso avrebbe potuto emergere. Per lui, astronomia significa l’astronomia dell’Almagesto. Il metodo con cui affronta quest’opera è quasi esattamente l’opposto della maniera di Pappo e Teone: mentre essi diligentemente parafrasano e ampliano il testo di Tolomeo per rendere comprensibile il livello speculativo allo studente di matematica, Proclo elimina quasi completamente l’argomentazione matematica. In tal modo egli sottopone continuamente al lettore la questione, dimenticata dai commentatori alessandrini nella loro preoccupazione per i dettagli, di quali fossero i fenomeni dei quali dovevano dar conto i modelli proposti. Proclo non cerca di riassumere i passi deduttivi con cui Tolomeo progredisce, mediante l’analisi delle osservazioni, da una struttura ipotetica al modello finale, quantitativo, di ciascun corpo celeste; tuttavia egli fornisce descrizioni sorprendentemente complete di strumenti osservativi come l’anello meridiano, che superano talvolta di gran lunga i resoconti piuttosto stringati di Tolomeo. Non è semplice determinare se egli si basasse su testi più antichi, oggi perduti, che spiegavano la costruzione degli strumenti, o se avesse di quegli strumenti un’esperienza più diretta: la descrizione della diottra, o strumento di mira, di Ipparco potrebbe essere una ricostruzione congetturale.
Verso l’inizio della Hypotyposis, Proclo elenca dieci fenomeni – in altri termini, dieci asserti osservativi generalizzati sull’aspetto del cielo – che egli ritiene abbiano spinto gli astronomi a sviluppare i loro modelli; tali fenomeni vanno da fatti elementari, come le variazioni di velocità che i pianeti esibiscono nel loro circuito sulla fascia dello Zodiaco, a percezioni più complesse, come le variazioni nelle caratteristiche delle eclissi o le irregolarità degli intervalli di visibilità di Venere e Mercurio. La lista è interessante e senza dubbio avvia il lettore ad afferrare nel suo insieme il disegno tolemaico. La critica che Proclo rivolge ai modelli tolemaici riguarda il metodo e ha anche una connotazione filosofica. Sul piano tecnico, interno alla metodologia operativa dell’astronomia, egli sostiene che la teoria delle precessioni di Tolomeo non è valida e a tal fine presenta un argomento empirico, più ampiamente esposto nel commentario al Timeo. Se – come afferma Tolomeo – vi fosse un moto di precessione di tutte le stelle fisse attorno ai poli dell’eclittica nella misura di un grado a secolo, allora la costellazione dell’Orsa Maggiore non avrebbe potuto rimanere tra le stelle sempre visibili per cinquecento anni a partire dal tempo di Omero, come confermano le testimonianze dell’Iliade e degli osservatori successivi. Secondariamente, Proclo solleva dubbi sull’affidabilità dei dati osservativi sui quali è costruita la teoria tolemaica e propone poi una teoria alternativa, che usa la variazione della parallasse solare risultante dalla sua eccentricità per spiegare l’apparente spostamento dei punti equinoziali e tropicali. Tale critica della teoria della precessione è più abile che convincente, e fa sospettare che le reali motivazioni che spinsero Proclo a formularla fossero le sue obiezioni di ordine metafisico all’astronomia e alla metodologia tolemaiche. Sul piano filosofico egli ricusa l’esistenza fisica dei modelli tolemaici in quanto composti da sfere materiali nella disposizione geometrica proposta dall’Almagesto; in tale questione dichiara di essere in contrasto con gli stessi astronomi. Il punto più importante, sotto il profilo della storia dell’astronomia, è la formulazione da parte di Proclo di asserti che – almeno isolatamente – possono essere letti come propositivi di un’interpretazione ‘strumentalista’ del ruolo dei modelli geometrici nell’astronomia.
Dopo la morte di Proclo, nel 485, il suo discepolo e biografo Marino gli succedette alla guida della scuola platonica di Atene. A Marino non è attribuito alcun trattato o scritto astronomico, ma in alcuni scholia anonimi contenuti in due manoscritti astronomici è indicato come un’autorità in questo campo. In uno di essi si afferma che l’interpretazione di Marino della teoria tolemaica della precessione implica che tutte le stelle fisse ruotino lentamente su una singola sfera, mentre ciascun pianeta ha un movimento suo proprio. L’altro scolio riferisce che Marino citò Pappo per un metodo di calcolo della parallasse lunare. Questi accenni non forniscono sufficienti elementi per supporre che Marino abbia dato un contributo personale all’astronomia, ma suggeriscono che insegnò la materia a un discreto livello tecnico. Secondo le fonti, comunque, il miglior astronomo e matematico tra gli allievi di Proclo non fu Marino, bensì Ammonio di Alessandria. A testimonianza del suo interesse per l’astronomia rimangono una serie di osservazioni planetarie registrate dal fratello Eliodoro, presenti all’interno di una raccolta di introduzioni alla materia, in alcune copie manoscritte dell’Almagesto. Gli osservatori erano Eliodoro (che scrive in prima persona), Ammonio e un terzo uomo che era probabilmente un loro zio. Il più antico di tali rapporti è quello relativo a un’occultazione lunare di Venere occorsa nel 475 e il più recente quello su un passaggio di Venere vicino a Giove nel 510; i rimanenti sono infine osservazioni di occultazioni e convergenze riguardanti Luna, pianeti e stelle dello Zodiaco. Il testo non espone lo scopo di tali osservazioni, ma sembra probabile, dal loro carattere, che non si trattasse né di mere esercitazioni didattiche, né di un’investigazione teorica sistematica, ma piuttosto di un tentativo di verifica di certi aspetti della teoria tolemaica e della qualità delle tavole esistenti all’inizio del VI secolo. Così, in due osservazioni della Luna ci è fornito un calcolo della longitudine lunare per la durata dell’osservazione (derivante, in ogni caso, dall’uso di un astrolabio piano, che è l’unico strumento menzionato) e in due osservazioni dei pianeti la distanza rilevata è confrontata con quella ottenuta dalle tavole tolemaiche o dalle effemeridi. Simplicio, il discepolo di Ammonio, confermò in seguito un’osservazione fatta da Ammonio della posizione della stella Arturo, che apparentemente conferma la teoria tolemaica della precessione.
Ad Ammonio sono attribuite due opere astronomiche di differente natura, entrambe perdute: un trattato sull’astrolabio piano e un insieme di tavole astronomiche. Queste tavole sono menzionate come la fonte più autorevole da una raccolta di tavole araba di molto posteriore, l’Almanacco di al- Zarqālī (XI sec.). Il principio organizzativo dell’Almanacco (e implicitamente delle tavole di Ammonio) è che ogni longitudine planetaria è rilevata a intervalli di cinque o dieci giorni all’interno di un periodo ricorrente di anni, in un calendario di tipo giuliano (con anni di 365 giorni, più un giorno intercalare ogni quattro anni). I periodi in questione sono i periodi babilonesi detti ‘pronostici per l’anno successivo’ (v. Sezione Vicino Oriente antico, cap. XIII, par. 2). La testimonianza di al-Zarqālī è confermata dai riferimenti alle tavole planetarie di Ammonio contenute in un testo sul moto planetario attribuito – forse erroneamente – a Eliodoro. Dai papiri possiamo constatare che due tratti salienti dell’Almanacco, e precisamente l’uso dei periodi planetari e la registrazione a intervalli di cinque giorni, erano già noti ai compilatori di almanacchi planetari dell’Egitto romano prima dell’epoca di Ammonio.
La tradizione astronomica alessandrina fu poi portata avanti da vari discepoli di Ammonio. Eutocio di Ascalona, autore di molti commentari superstiti alle opere di Archimede e di Apollonio, sembra si sia fatto carico per breve tempo della scuola filosofica dopo la morte di Ammonio, nel 520 circa. Anche se sotto il suo nome non ci è pervenuto nessun testo astronomico, di lui possediamo un elaborato oroscopo calcolato, usando le Tavole manuali, per una persona nata nel 497. In uno dei suoi commentari Eutocio fa anche riferimento a note inedite all’Almagesto. Il successore di Eutocio, Olimpiodoro, nel 564 tenne una serie di conferenze che presupponevano qualche abilità nello svolgimento di calcoli astronomici; circa nello stesso periodo Giovanni Filopono compose un autorevole trattato sull’astrolabio basato su quello di Teone. Anche Simplicio, il maggior rivale di Filopono, iniziò i suoi studi filosofici e astronomici con Ammonio ad Alessandria, all’inizio di quella carriera peripatetica che in seguito lo portò ad Atene, a Ctesifonte e molto probabilmente ad Harran. È il solo tra i neoplatonici a dimostrare un acuto senso storico della situazione dell’astronomia greca anteriore a Tolomeo, che venne da lui effettivamente usata nel commentario al De caelo di Aristotele. I luoghi astronomici del suo commentario, basati su fonti molto più antiche, contengono valide notizie sull’astronomia del IV e dell’inizio del III sec. a.C.; in particolare, Simplicio è la nostra fonte principale per i particolari del modello delle sfere omocentriche di Eudosso.
I contatti scientifici tra Alessandria e la capitale Costantinopoli possono essere fatti risalire fino all’inizio del VI sec., quando Eutocio inviò la sua edizione di un commentario sulle Coniche di Apollonio all’ingegnere Antemio di Tralle, architetto della Santa Sofia giustinianea. Nulla di ciò che sappiamo su Antemio e il suo consocio Isidoro di Mileto li connette però all’astronomia, né ci incoraggia il fatto che tra i vari titoli di composizioni su argomenti vagamente astronomici riportati da Triboniano, il consigliere di Giustiniano, si trovi un commentario alle Tavole manuali in versi epici. Un secolo più tardi, comunque, l’imperatore Eraclio sostenne di essere autore di un lungo commentario alle Tavole manuali che segue la falsariga del commentario breve di Teone, ossia una semplice raccolta di istruzioni senza teoria. Generalmente si suppone che il commentario di Eraclio sia stato in realtà scritto da Stefano di Alessandria, filosofo che studiò con Olimpiodoro prima di spostarsi nella capitale, convocato dall’imperatore; si può immaginare che Stefano sia stato altresì responsabile del trasferimento a Costantinopoli di manoscritti di antichi lavori astronomici, che furono gli antenati della tradizione dei testi bizantini.
L’impressione che si ricava dai testi pervenutici – e cioè che nella Tarda Antichità le scuole neoplatoniche di Atene e di Alessandria avessero quasi un monopolio sull’astronomia – può essere stata rafforzata dall’esiguità dei canali attraverso cui i testi furono trasmessi nel periodo bizantino; certamente tale impressione non è del tutto veridica. Forse un’indicazione più significativa, sia della diffusione geografica degli studi astronomici sia delle varie tradizioni intellettuali nelle quali furono accolti e sviluppati, può essere desunta dalla vasta riserva di scholia e di testi anonimi conservata nei manoscritti e tuttora in gran parte inesplorata. La copiosa letteratura astrologica, sia nei manoscritti medievali sia nei papiri, implica anche l’esistenza di una tradizione professionale che deve aver conservato almeno quella competenza astronomica che si riferisce al calcolo e alla predizione.
Considerando l’estensione e i limiti dell’attività astronomica svolta lontano dai centri culturali dell’Oriente greco, è interessante mettere a confronto tre momenti del passaggio della scienza in altre lingue, alla periferia della koinḗ greca. Testi astronomici indiani testimoniano stadi dell’astronomia greca altrimenti poco attestati nelle fonti dirette. Il più antico trattato sanscrito direttamente basato su fonti greche è un testo astrologico, contenente anche qualche rudimentale principio astronomico, composto nel 149-150, ossia esattamente contemporaneo all’Almagesto di Tolomeo. Questo testo è andato perduto, ma sopravvive nella sostanza, messo in versi nello Yavanajātaka di Sphujidvaja, posteriore di poco più di un secolo. I cinque trattati astronomici sanscriti sintetizzati nel Pañcasiddhāntikā (VI sec.) di Varāhamihira contenevano sistemi fondamentalmente completi e autosufficienti di astronomia predittiva; in altri termini, essi fornivano tutti gli strumenti necessari per calcolare posizioni planetarie, eclissi e altri fenomeni. Vi erano rappresentate sia la tradizione aritmetica greco-babilonese sia la tradizione cinematica greca, e in quest’ultimo caso i testi ponevano in discussione i modelli stessi. Tutto ciò implica che nel II e III sec., al limite più orientale di quel che un tempo era stato l’Impero seleucidico, era fiorente una vigorosa scuola di astronomia teorica e pratica (cioè astrologica); se non fosse stato per la trasmissione in lingua sanscrita della sua produzione, sarebbe svanita senza traccia alcuna.
Con ogni plausibilità l’astronomia etiopica avrebbe dovuto mantenere legami molto più stretti con Alessandria, ma nelle fonti etiopiche lo scopo dell’astronomia risulta essere limitato ad applicazioni pratiche, che nei fatti aprirono a soggetti avanzati: computi cronologici mediante ‘tavole delle ombre’, computi calendaristici e pasquali. L’astrologia è del tutto assente, e così non c’è modo di conoscere modelli o parametri più sofisticati rispetto alle più semplici periodicità principali del Sole e della Luna.
Il caso dell’Occidente latino è più complesso. Sappiamo dall’attività di Menelao di Alessandria e da brani di Galeno che nel II sec. d.C. Roma stessa era un importante centro di astronomia e di astrologia; si deve inoltre presumere che ci sia stata una richiesta di tavole e di testi avanzati e aggiornati nelle aree dell’Impero romano di lingua latina non meno che nell’Oriente greco. Quanto sia perdurata questa situazione è di difficile valutazione; nella Tarda Antichità si verifica il rilevante fenomeno di scrittori che si trattengono a lungo sull’astronomia, ma quasi nessuno di loro si riferisce a ciò che prettamente concerne la scienza astronomica negli ultimi quattro o cinque secoli. Calcidio nel IV sec., Macrobio e Marziano Capella all’inizio del VI sembrano evitare quasi deliberatamente di conoscere i testi di Tolomeo e dei suoi immediati predecessori. Gli scrittori latini di astronomia – come, in primo luogo, Plinio – aderiscono a una tradizione il cui fine è l’intrattenimento e l’insegnamento morale, e non sentono alcun bisogno di riportare informazioni dettagliate né di farle corrispondere a una scienza autonoma dalle applicazioni pratiche. Il solo esempio certo di traduzione, o adattamento, in latino dell’astronomia tecnica greca è una raccolta di tavole tradotte nel 534 circa dalle Tavole manuali, accompagnato da un insieme di istruzioni conosciute sotto il titolo di Praeceptum canonis Ptolomei; nello stato incompleto in cui queste tavole sono state trasmesse, sono quasi inutili. Sembrerebbe che in Italia, nel momento in cui la conoscenza della lingua greca stava perdendosi anche tra gli uomini di cultura, non vi fosse più una richiesta pratica tale da motivare il tipo di trasmissione dell’astronomia che, in India, si era verificata poco tempo prima.
Dzielska 1995: Dzielska, Maria, Hypatia of Alexandria, Cambridge (Mass.), Harvard University Press, 1995 (tit. orig.: Hypatia z Aleksandrii, Krakow, Nakl. Uniwersytetu Jagiellonskiego, 1993).
Jones 1990: Jones, Alexander, Ptolemy’s first commentator, Philadelphia (Pa.), American Philosophical Society, 1990.
– 1994: Jones, Alexander, The place of astronomy in Roman Egypt, in: The sciences in Graeco-Roman society, edited by Timothy D. Barnes, Edmonton, Academic Printing and Publishing, 1994, pp. 25-51. Neugebauer 1970-71: Neugebauer, Otto - Pingree, David Edwin, The Pañcasiddhantika of Varahamihira, København, Munksgaard in Komm., 1970-1971, 2 v.
– 1975: Neugebauer, Otto, A history of ancient mathematical astronomy, Berlin-New York, Springer-Verlag, 1975, 3 v.
– 1979: Neugebauer, Otto, Ethiopic Easter computus, “Oriens Christianus”, 63, 1979, pp. 87-102.
Pingree 1978: The Yavanajataka of Sphujidhvaja, edited, translated, and commented by David Pingree, Cambridge (Mass.), Harvard University Press, 1978.
– 1990: Pingree, David, The Preceptum Canonis Ptolomei, in: Rencontres de cultures dans la philosophie médiévale. Traductions et traducteurs de l’antiquité tardive au XIVe siècle, Louvain-la-Neuve, Université catholique de Louvain; Cassino, Università degli studi, 1990, pp. 355-375.
– 1994: Pingree, David, The teaching of the Almagest in late antiquity, in: The sciences in Graeco-Roman society, edited by Timothy D. Barnes, Edmonton, Academic Printing and Publishing, 1994, pp. 75-98.
Siorvanes 1996: Siorvanes, Lucas, Proclus. Neo-platonic philosophy and science, New Haven (Conn.), Yale University Press, 1996.
Tihon 1981: Tihon, Anne, L’astronomie byzantine (du Ve au XVe siècle), “Byzantion”, 51, 1981, pp. 603-624.
– 1985: Tihon, Anne, Théon d’Alexandrie et les Tables Faciles de Ptolémée, “Archives internationales d’histoire des sciences”, 35, 1985, pp. 106-123.
Toomer 1985: Toomer, Gerald J., Galen on the astronomers and astrologers, “Archive for history of exact sciences”, 32, 1985, pp. 193-206.