• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

sottospazio ortogonale

Enciclopedia della Matematica (2013)
  • Condividi

sottospazio ortogonale


sottospazio ortogonale in algebra lineare, dati uno spazio vettoriale V su un campo K dotato di prodotto scalare, qui indicato con 〈 , 〉, e un suo sottoinsieme S, è il sottoinsieme S ⊥ formato da tutti i vettori di V ortogonali ai vettori w di S, tali cioè che ∀v ∈ V, 〈w, v〉 = 0, che si dimostra essere un sottospazio di V. Due sottospazi U e W di V si dicono ortogonali se U ⊆ V ⊥ (e allora, per la simmetria del prodotto scalare, è anche V ⊆ U ⊥) (si veda anche → somma diretta).

Vedi anche
ortogonale In geometria elementare si dice di due enti che formano tra loro un angolo retto. fig. 1 ADue rette r, s del piano si dicono o. (o perpendicolari) se si intersecano formando quattro angoli retti (fig. 1 A); una retta r dello spazio si dice o. (o perpendicolare) a un piano α se incontra il piano in ... proiezione Matematica In geometria, la p. di un punto P da un centro S è l’operazione di tracciare la retta SP; p. di una retta r da un centro S è la costruzione del piano individuato da r e S; p. di un punto P da una retta s è la costruzione del piano individuato da s e P; p. di una linea λ da un centro S è la ... campo Biologia C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine ad arti posteriori, quelli branchiali a branchie ecc. La realizzazione delle capacità di cui è dotato ... inclusione Botanica Sostanza o soluzione complessa racchiusa nei vacuoli delle cellule, detta anche incluso cellulare; può essere liquida, come le goccioline di oli, o solida, come la drusa . CHIMICA Composto di i. Tipo di composto chimico derivante dall’imprigionamento di molecole di una sostanza (molecole ospiti) ...
Tag
  • SPAZIO VETTORIALE
  • PRODOTTO SCALARE
  • ALGEBRA LINEARE
  • SOTTOINSIEME
  • SIMMETRIA
Vocabolario
sottospàzio
sottospazio sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
ortogonale
ortogonale agg. [der. del lat. tardo orthogonus «angolo retto», che è dal gr. ὀρϑογώνιος «ad angolo retto», comp. di ὀρϑός «retto» e γωνία «angolo»]. – In geometria elementare, detto di ciascuno dei due enti che formano tra loro un angolo...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali