sottospazio ortogonale
sottospazio ortogonale in algebra lineare, dati uno spazio vettoriale V su un campo K dotato di prodotto scalare, qui indicato con 〈 , 〉, e un suo sottoinsieme S, è il sottoinsieme S ⊥ formato da tutti i vettori di V ortogonali ai vettori w di S, tali cioè che ∀v ∈ V, 〈w, v〉 = 0, che si dimostra essere un sottospazio di V. Due sottospazi U e W di V si dicono ortogonali se U ⊆ V ⊥ (e allora, per la simmetria del prodotto scalare, è anche V ⊆ U ⊥) (si veda anche → somma diretta).