• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

spazio normale

Enciclopedia della Matematica (2013)
  • Condividi

spazio normale


spazio normale spazio topologico X che soddisfa il seguente assioma di → separazione: per ogni coppia di chiusi C1 e C2 disgiunti, esiste una coppia di aperti A1 e A2 disgiunti tali che A1 contiene C1 e A2 contiene C2. Uno spazio topologico X è uno spazio normale se e solo se ogni applicazione continua da un sottoinsieme chiuso di X nell’intervallo unitario ha un ampliamento continuo con campo di variabilità compreso nell’intervallo unitario (teorema di Tietze). Uno spazio normale che è anche T1 (ossia in cui vale l’assioma di separazione T1 o assioma di Fréchet) è uno spazio T4 (spazio di Tietze). In un qualsiasi spazio normale, non necessariamente T4, vale il lemma di → Uryson. La nozione di spazio normale è prossima a quella di spazio metrico: ogni spazio normale che possiede una base numerabile (costituita da un’infinità numerabile di elementi) è omeomorfo (→ omeomorfismo) a un sottospazio dello spazio di Hilbert e quindi, in particolare, è metrizzabile.

Vedi anche
topologia Matematica Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse. Proprietà topologiche La t., che è oggi un capitolo fondamentale della matematica, in origine si limitava allo studio di aspetti geometrici ... omeomorfismo In matematica, corrispondenza biunivoca e bicontinua tra due spazi topologici S e S′, tale cioè che: a) a ogni punto P di S associ uno e un sol punto P′ di S′ e viceversa (corrispondenza biunivoca); b) fissato a piacere un intorno I′ di un qualunque punto P′ di S′, esista un intorno I del punto P corrispondente ... applicazione Matematica Il concetto di a. è una generalizzazione del concetto classico di funzione (➔ corrispondenza). Si parla di a. di un insieme P in un insieme Q, quando tra i due si stabilisce una corrispondenza del tipo seguente: a ogni elemento di P corrisponde un ben determinato elemento di Q, mentre un elemento ... campo Biologia C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine ad arti posteriori, quelli branchiali a branchie ecc. La realizzazione delle capacità di cui è dotato ...
Tag
  • INTERVALLO UNITARIO
  • SOTTOINSIEME CHIUSO
  • SPAZIO TOPOLOGICO
  • SPAZIO DI HILBERT
  • TEOREMA DI TIETZE
Vocabolario
spaziare
spaziare v. intr. e tr. [dal lat. spatiari «passeggiare, distendersi», der. di spatium «spazio»] (io spàzio, ecc.). – 1. intr. (aus. avere) a. non com. Muoversi, estendersi liberamente e ampiamente per un grande spazio: le rondini spaziavano...
normale
normale agg. [dal lat. normalis «perpendicolare», der. di norma (v. norma)]. – 1. Perpendicolare (sign. direttamente connesso a quello etimologico di norma «squadra»): retta n. ad altra retta, a un piano, ecc.; retta n. a una curva in un...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali