• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

Hilbert, teorema degli zeri di

Enciclopedia della Matematica (2017)
  • Condividi

Hilbert, teorema degli zeri di


Hilbert, teorema degli zeri di o Hilbertscher Nullstellensatz, teorema di algebra commutativa, punto di partenza della geometria algebrica, che stabilisce una corrispondenza biunivoca tra gli insiemi algebrici dello spazio affine An(K) (dove K è un campo algebricamente chiuso) e una particolare classe di ideali dell’anello dei polinomi K [x1, …, xn] a n indeterminate e a coefficienti in K. La corrispondenza è quella che associa a ogni ideale I di K [x1, …, xn] l’insieme algebrico V(I) ⊆ An(K) definito dall’annullamento di tutti gli elementi di I; nell’altro verso, la corrispondenza associa a ogni insieme algebrico Z ⊆ An(K) l’ideale ℑ(Z) ⊆ K [x1, …, xn] costituito dai polinomi che si annullano su Z. Mentre V(ℑ(Z)) = Z, è falso il viceversa: ℑ(V(I)) coincide infatti con Rad(I), l’ideale radicale di I. D’altra parte, un ideale e il suo ideale radicale definiscono sempre lo stesso insieme algebrico, vale a dire V(I) = V(Rad(I)); pertanto, se ci si restringe a considerare gli ideali radicali, il teorema degli zeri di Hilbert stabilisce una corrispondenza biunivoca (che inverte le inclusioni) tra gli insiemi algebrici di An(K) e gli ideali radicali di K [x1, …, xn]. Secondo tale corrispondenza, i punti di An(K) corrispondono agli ideali massimali di K [x1, …, xn].

Vedi anche
ideale Matematica fig.In algebra moderna, si chiama i. in un anello A un particolare tipo di sottoanello I di A tale che il prodotto ai di un qualsiasi elemento a di A per un qualsiasi elemento i di I sia ancora un elemento di I; in simboli: AI ⊂ I. Nel caso di un anello non commutativo vi sarà luogo a parlare ... polinomio In matematica, somma di monomi (in senso proprio, solo con riferimento a monomi interi), detti termini del p.: binomio, trinomio, quadrinomio ecc., è un polinomio rispettivamente di 2, 3, 4 ecc. termini; coefficienti di un p. sono i coefficienti dei suoi monomi; grado di un p. rispetto a una lettera ... algebra Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. Con significato specifico è sinonimo di sistema ipercomplesso. La parola al-giabr è usata per la ... insieme Fisica Nella meccanica statistica classica con i. statistico, o con il termine ensemble, introdotto da J.W. Gibbs, si indicano famiglie di stati di equilibrio macroscopico. Nello spazio delle fasi, cioè nello spazio delle coordinate pi, (i=1, 2, 3) e delle quantità di moto qi (i=1, 2, 3) di ciascuna ...
Tag
  • CORRISPONDENZA BIUNIVOCA
  • ALGEBRA COMMUTATIVA
  • GEOMETRIA ALGEBRICA
  • ANELLO DEI POLINOMI
  • INSIEMI ALGEBRICI
Vocabolario
teorèma
teorema teorèma s. m. [dal lat. tardo theorēma, gr. ϑεώρημα (propr. «ricerca, meditazione», der. di ϑεω-ρέω «esaminare, osservare»)] (pl. -i). – 1. Nella cultura classica e medievale, la «visione» sensibile o intellettiva e il relativo...
hilbertiano
hilbertiano 〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali