• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

Lowenheim-Skolem, teorema di

Enciclopedia della Matematica (2013)
  • Condividi

Lowenheim-Skolem, teorema di


Löwenheim-Skolem, teorema di riportato anche come teorema di Skolem (dal nome, oltre che di L.L. Löwenheim, anche del logico e matematico norvegese T.A. Skolem) afferma che ogni teoria dotata di un → modello, cioè di un insieme di → interpretazione, ammette un modello che sia finito o numerabile. Applicato alla teoria degli insiemi, in cui si dimostra l’esistenza di insiemi infiniti di cardinalità maggiore di quella numerabile, il teorema sembra comportare, paradossalmente, l’esistenza di un modello numerabile per una teoria che asserisce l’esistenza di un insieme più che numerabile (paradosso di Skolem). Secondo Skolem, il paradosso scompare quando si consideri la cardinalità come relativa a un sistema di assiomi: per una data teoria, l’insieme dei sottoinsiemi di un insieme infinito può risultare non numerabile perché la teoria non dispone dei mezzi per enumerarlo (l’insieme di coppie in cui consiste l’enumerazione non è nel modello).

Vedi anche
insieme numerabile In matematica, insieme che può essere posto in corrispondenza biunivoca con l’insieme dei numeri interi naturali. Un insieme n. è dunque necessariamente un insieme infinito; ogni suo sottoinsieme è finito oppure è esso stesso n.; da ciò segue che agli insiemi n. corrisponde il minimo n. cardinale transfinito ... lògica matemàtica Branca della logica, che utilizza un linguaggio simbolico e adotta un sistema di calcolo di tipo algebrico per esaminare le espressioni di un discorso deduttivo. Queste ultime possono essere considerate formalmente come oggetti grafici combinabili tra loro (sintassi) o in relazione al loro significato ... matematica Insieme delle scienze che studiano in modo ipotetico-deduttivo entità astratte come i numeri e le misure: la m. pura studia i problemi matematici indipendentemente dalla loro utilizzazione pratica; alla m. applicata compete l’elaborazione di strumenti e modelli adatti agli scopi di altre scienze (fisica, ... Thoralf Skolem Logico e matematico (Sandsvär 1887 - Oslo 1963). Prof. a Bergen e a Oslo. Ha dato un contributo determinante alla costruzione della teoria assiomatica degli insiemi; ha dimostrato per primo che nessun insieme finito o numerabile di assiomi esprimibile nella logica elementare è capace di definire la teoria ...
Tag
  • TEORIA DEGLI INSIEMI
  • INSIEME INFINITO
  • CARDINALITÀ
  • NUMERABILE
  • ASSIOMI
Vocabolario
teorèma
teorema teorèma s. m. [dal lat. tardo theorēma, gr. ϑεώρημα (propr. «ricerca, meditazione», der. di ϑεω-ρέω «esaminare, osservare»)] (pl. -i). – 1. Nella cultura classica e medievale, la «visione» sensibile o intellettiva e il relativo...
òcchio di civétta
occhio di civetta òcchio di civétta locuz. usata come s. m. – Altro nome della pianta primavera (Primula vulgaris).
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali