Rolle, teorema di
Rolle, teorema di in analisi, stabilisce che se una funzione ƒ(x), continua in un intervallo chiuso [a, b] e dotata di derivata nell’intervallo aperto (a, b), assume gli stessi valori ƒ(a) = ƒ(b) agli estremi dell’intervallo, allora esiste almeno un punto ξ ∈ (a, b) in cui la derivata ƒ′ (ξ) si annulla. Per esempio la funzione ƒ(x) = √(x) − x è continua in [0, 1], derivabile in (0, 1] e ƒ(0) = ƒ(1); la sua derivata
si annulla per x = 1/4. Intuitivamente, nelle condizioni poste, o la funzione è costante, e allora la sua derivata si annulla in ogni punto dell’intervallo, oppure ha in esso almeno un punto di massimo o di minimo. Il teorema di Rolle è un caso particolare del teorema del valore medio.