• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

trasformazione lineare

Enciclopedia della Matematica (2013)
  • Condividi

trasformazione lineare


trasformazione lineare in algebra lineare, altra locuzione per → applicazione lineare, cioè applicazione ƒ tra due spazi vettoriali V e W su un campo K tale che per ogni coppia di elementi λ, μ appartenenti a K e per ogni coppia di vettori v1, v2 ∈ V risulta ƒ(λvi + μv2) = λƒ(v1) + μƒ(v2). La trasformazione si dice trasformazione lineare invertibile se è un isomorfismo; se W coincide con V è un automorfismo. Se V è uno spazio vettoriale di dimensione finita n, se {e1, …, en} è una sua base, se (x1, …, xn) sono le coordinate di un arbitrario vettore x di V e (y1, …, yn) sono le coordinate del vettore y = ƒ(x), allora le coordinate di y sono espresse da

formula

o, equivalentemente, in forma matriciale y = Ax, in cui la matrice

formula

è detta matrice della trasformazione lineare nella base {e1, …, en} ed è non singolare (cioè tale che det(A) ≠ 0, e quindi invertibile) se e solo se la trasformazione lineare è invertibile; la sua matrice inversa A−1 è la matrice della trasformazione inversa ƒ −1 L’insieme stesso di tali matrici quadrate di ordine n su un campo forma un gruppo rispetto all’operazione di prodotto righe per colonne, detto gruppo lineare generale di ordine n su K (→ gruppi classici). Se K è il campo dei numeri reali, si ha il gruppo ortogonale reale se la matrice A è ortogonale (AAT = ATA = I); il gruppo speciale ortogonale reale (gruppo delle rotazioni) se il determinante di A è uguale a 1 (le trasformazioni ortogonali con determinante uguale a −1 sono dette simmetrie e non formano un gruppo); se A è una matrice di permutazione si ha il gruppo simmetrico di grado n e il relativo sottogruppo delle permutazioni di classe pari è detto gruppo alterno.

Tag
  • PRODOTTO RIGHE PER COLONNE
  • GRUPPO LINEARE GENERALE
  • MATRICE DI PERMUTAZIONE
  • SPAZIO VETTORIALE
  • GRUPPO SIMMETRICO
Vocabolario
trasformazióne
trasformazione trasformazióne s. f. [dal lat. transformatio -onis, der. di transformare «trasformare»]. – 1. L’atto, l’azione o l’operazione di trasformare, il fatto di trasformarsi o di venire trasformato, che comporta un cambiamento,...
lineare¹
lineare1 lineare1 agg. [dal lat. linearis]. – 1. Inerente a una linea (per lo più retta), che procede secondo una retta, o che si sviluppa prevalentemente nel senso della lunghezza: misure l., le misure di lunghezza (contrapp. alle misure...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali