• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

varieta

Enciclopedia della Matematica (2013)
  • Condividi

varieta


varietà nozione che generalizza quelle di curva e superficie della geometria analitica. Intuitivamente, una varietà è uno spazio a più dimensioni che localmente, intorno a ogni suo punto, presenta una struttura simile a quella dello spazio euclideo. L’introduzione di tale concetto generale e dell’originario termine tedesco Mannigfaltigkeit, da cui proviene il corrispondente termine inglese manifold, si deve a B. Riemann, che lo definì nella seconda metà del xix secolo, come fecondo tentativo di fornire un quadro unitario dello studio degli ambienti geometrici, dopo lo sconcerto legato alla scoperta delle geometrie non euclidee e avvalendosi dei nuovi più astratti strumenti messi a disposizione nel frattempo dalle varie branche della matematica. La definizione dipende dall’ambiente in cui si opera, dalla natura degli elementi che lo costituiscono e dalle proprietà che si vogliono studiare. A seconda che si usino gli strumenti della sola topologia o anche quelli del calcolo differenziale e dell’analisi complessa, si costruiscono rispettivamente le → varietà topologiche oppure le → varietà differenziabili e le → varietà complesse (o analitiche), che sono raffinamenti della nozione di varietà topologica.

In italiano, il termine varietà è utilizzato non solo con il significato sopra illustrato del termine inglese manifold, ma anche con il significato del termine inglese variety, il quale si riferisce unicamente alle → varietà algebriche (che non sono varietà topologiche): tali varietà discendono dallo studio, da un punto di vista geometrico, dell’insieme delle soluzioni di un sistema di equazioni polinomiali.

Le varietà algebriche sono l’oggetto privilegiato di studio della geometria algebrica, che utilizza gli strumenti dell’algebra e che in Italia ha avuto una ricca scuola (si veda la scheda di approfondimento alla voce → geometria algebrica).

Tag
  • VARIETÀ DIFFERENZIABILI
  • GEOMETRIE NON EUCLIDEE
  • CALCOLO DIFFERENZIALE
  • EQUAZIONI POLINOMIALI
  • GEOMETRIA ALGEBRICA
Vocabolario
varietà¹
varieta1 varietà1 s. f. [dal lat. variĕtas -atis, der. di varius «vario»]. – 1. a. La qualità di ciò che è vario, sia di più cose che sono diverse tra loro, sia di una cosa singola, in quanto sia diversa negli elementi che la compongono,...
varietà²
varieta2 varietà2 s. m. [adattam. del fr. variété, propriam. s. f. corrispondente all’ital. varietà1, divenuto masch. (non però in francese) per ellissi da Théâtre des Variétés «teatro di spettacoli varî» (usato come nome proprio)]. – Spettacolo...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali