carta
carta o carta locale, termine usato in topologia in relazione al concetto di varietà differenziabile. Se M è una varietà differenziabile di dimensione n, una carta di M è una coppia (U, φ), dove U è un aperto di M e φ: U → Ω è un omeomorfismo di U su un aperto Ω di Rn. Le carte sono lo strumento fondamentale che localmente permette di dare a una varietà differenziabile la struttura topologica e differenziabile dello spazio Rn. Ogni famiglia di carte locali che ricopre M è detta atlante. Per esempio, considerata la superficie terrestre come varietà bidimensionale, ogni intorno di un suo punto (aperto), in quanto omeomorfo al piano, viene rappresentato da una carta o mappa di un atlante della terra. L’omeomorfismo in questo caso è costituito da una proiezione, per esempio una proiezione stereografica.