• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

differenziale

Dizionario delle Scienze Fisiche (1996)
  • Condividi

differenziale


differenziale [agg. e s.m. Der. di differenza] [ANM] Nella sua forma più semplice, cioè per funzioni reali di variabile reale, è un funzionale lineare (propr. d. primo) che a ogni f:I⊂R→R e a ogni coppia di punti x₀, x₁∈I associa il numero df(x₀, dx)=f'(x₀)dx, dove, per definizione, è dx=x₁-x₀. Questa definizione rende rigorosa la nozione intuitiva di d. (l'incremento della funzione per un incremento infinitesimo del suo argomento) che, sebbene non corretta, è quella che da un punto di vista storico ha dato vita alla nozione di derivata. Si dice d. secondo di una funzione il d. del d. primo: si indica con d2f; e analogamente, il d. n-esimo, o di ordine n, è il d. del d. (n-1)-esimo: dnf=d(dn-1f). Convenendo di riguardare il d. dx della variabile come indipendente dalla x (il che è lecito se x è effettivamente una variabile indipendente), risulta: d2y=f''(x)dx2, ..., dny=fn(x)dxn. ◆ [FTC] [MCC] Particolare rotismo epicicloidale a ruote coniche, nel quale la velocità angolare del membro conduttore è uguale alla media della velocità delle due ruote condotte (v. cinematismo: I 600 Fig. 1.2); è applicato soprattutto agli autoveicoli, e consente di differenziare la velocità di rotazione delle ruote motrici in curva, mentre resta costante la velocità di rotazione dell'asse motore; ne esistono di vario tipo, per es. il d. autobloccante (o semplic. autobloccante s.m.), che permette la trasmissione di una coppia di una certa intensità a una delle ruote anche quando l'altra è in fase di slittamento, e il d. controllato (o comandato), speciale tipo di d. impiegato nei veicoli cingolati, con funzioni di sterzo. ◆ [ANM] D. assoluto: in una varietà riemanniana, la differenza tra il d. ordinario e quello covariante (v. oltre). ◆ [ANM] D. covariante: v. connessione in fisica teorica: I 730 a. ◆ [ALG] D. di una funzione: v. forme differenziali: II 686 c. ◆ [ANM] D. di un campo vettoriale: lo stesso che derivata di Lie. ◆ [ANM] D. esatto: una forma d. lineare Adx+Bdy+Cdz+..., che sia il d. totale di una certa funzione V(x,y,z,...); ciò accade se A=ðV/ðx, B=ðV/ðy, C=ðV/ðz, ... ◆ [ANM] D. esterno: v. forme differenziali: II 686 d. ◆ [ANM] D. esterno covariante: v. connessione: I 727 e. ◆ [ANM] Calcolo d.: parte dell'analisi matematica che si occupa delle questioni collegate al concetto di derivata. ◆ [ANM] Calcolo d. assoluto o calcolo tensoriale: formulazione del calcolo d. su varietà che è invariante per trasformazioni locali di coordinate: v. tensore: VI 125 a. ◆ [ANM] [PRB] Calcolo d. stocastico: generalizzazione del calcolo d. al caso in cui gli incrementi delle funzioni contengono termini aleatori: v. equazioni differenziali stocastiche: II 467 e. ◆ [ANM] Equazione d.: equazione che esprime un legame tra funzioni incognite, le loro derivate successive e le variabili indipendenti; sono equazioni d. ordinarie quelle che esprimo-no un legame tra una funzione incognita in una sola variabile, y=y(x), una o più delle sue derivate successive e la variabile indipendente x, mentre sono equazioni d. alle derivate parziali quelle in cui l'incognita è una funzione di più variabili z=z(x,y,...). Ordine di un'equazione d. è l'ordine massimo delle derivate che in essa compaiono. Un'equazione d. si dice lineare se è di primo grado rispetto alle funzioni incognite e alle loro derivate. Integrare, o risolvere, un'equazione d. significa trovare tutte le funzioni (soluzioni o integrali) che la soddisfano. ◆ [PRB] Equazione d. stocastica: equazione d. in cui una o più delle variabili hanno carattere stocastico: v. equazioni differenziali stocastiche. ◆ [ALG] Forma d. lineare: un'espressione del tipo Adx+Bdy+Cdz+..., dove A,B,C,... sono funzioni di x,y,z,... ◆ [ALG] [ANM] Geometria d.: lo studio degli enti geometrici sia "in piccolo", cioè delle proprietà locali degli enti stessi in un intorno dei loro punti, sia "in grande", cioè delle proprietà che implicano la considerazione dell'ente nella sua globalità. ◆ [ALG] Teorema del d.: v. curve e superfici: II 75 c.

Vedi anche
integrale In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per la prima volta in uno scritto di G. Bernoulli (1690); le denominazioni di integrale definito e integrale ... curva matematica 1. Generalità Nel linguaggio matematico, sinonimo di linea, intendendosi quindi anche la retta come una particolare curva. Una definizione di curva valida in ogni caso non è possibile per il fatto che non sono ben precisati i requisiti che deve avere un ente per potersi chiamare curva. Le ... tensore anatomia Muscolo volontario o involontario che ha la funzione di tendere un organo o una formazione anatomica: tensore del palato, contrae il palato molle; tensore del tarso, nell’orbita, comprime i punti lacrimali delle palpebre e la ghiandola lacrimale; tensore del timpano, nell’orecchio, distende ... varietà varietà agraria Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine cultivar, che si riferisce a un’entità subordinata alla specie; con ciò fu abolito per ...
Categorie
  • ALGEBRA in Matematica
  • ANALISI MATEMATICA in Matematica
  • STATISTICA E CALCOLO DELLE PROBABILITA in Matematica
Altri risultati per differenziale
  • differenziale
    Enciclopedia della Matematica (2013)
    differenziale per una funzione ƒ(x) di una sola variabile, è indicato con df ed è il prodotto della derivata ƒ’′(x) per l’incremento dx della variabile indipendente. Dunque, df = ƒ′ (x)dx = ƒ′ (x)h, dove h è un sinonimo di dx, utile per evitare confusioni di senso. Infatti h è una variabile indipendente ...
  • differenziale
    Dizionario di Economia e Finanza (2012)
    Termine matematico adottato, nella sua forma più semplice, per funzioni reali y=f(x) di variabile reale, nelle quali il d. è un funzionale lineare che, fissato x0, associa a ogni incremento dx=x−x0 della variabile indipendente, il numero df=f′(x0)dx o anche dy=f′(x0)dx, da cui l’espressione della derivata ...
  • differenziale
    Enciclopedia on line
    Economia Dazio d. Dazio che si applica su merci provenienti da paesi con cui si è in guerra doganale o a essi dirette, e che è perciò superiore a quello imposto sulle stesse merci importate o esportate da o verso gli altri paesi. Politica commerciale d. Politica che discrimina tra paese e paese, riservando ...
Vocabolario
differenziale
differenziale agg. e s. m. [der. di differenza]. – 1. agg. a. Delle differenze, che tien conto delle differenze, che stabilisce o intende stabilire una differenza: pretendere, ottenere, concedere un trattamento d.; pedagogia d., che distingue...
differenzialista
differenzialista agg. Che tiene conto delle differenze di identità tra le diverse culture e civiltà. ◆ Il razzismo «classico», che si diffonde nel XIX secolo, nega l’umanità del gruppo rifiutato, attribuendogli un’altra «razza». Questo...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali