• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

endomorfismo

Enciclopedia on line
  • Condividi

In matematica, l’omomorfismo (➔) di un’algebra (nel senso astratto di insieme con operazioni) con sé stessa o con una sua sottoalgebra. In particolare, se l’omomorfismo è un isomorfismo (➔), cioè una corrispondenza biunivoca conservante le operazioni, si hanno gli automorfismi dell’algebra.

Vedi anche
automorfismo In algebra, isomorfismo di un insieme dotato di una struttura algebrica (gruppo, corpo ecc.) in sé stesso.  ● In particolare si definisce automorfismo interno (di un gruppo G) l’automorfismo che si ottiene facendo corrispondere al generico elemento x l’elemento y·x·y−1 (tenendo fisso y e facendo variare ... omomorfismo Corrispondenza tra due insiemi dotati di struttura algebrica, che sia comparabile con le operazioni definite negli insiemi. ● Dati due insiemi A e A′ provvisti di una struttura algebrica dello stesso tipo (per es., due gruppi o due anelli o due spazi vettoriali), si chiama omomorfismo di A in A′ (o, ... autovettore In matematica, autovettore di una trasformazione lineare T è un vettore A la cui direzione non varia per l’applicazione di T: cioè TA=kA, con k grandezza scalare, autovalore (➔) della trasformazione. isomorfismo In matematica, corrispondenza biunivoca tra due insiemi dotati di ‘strutture’, la quale conservi le strutture stesse. Le strutture sono di tre tipi: d’ordine, algebriche e topologiche, e si hanno perciò tre diversi tipi di isomorfismi. isomorfismo tra insiemi dotati di strutture d’ordine (isomorfismo ...
Categorie
  • ALGEBRA in Matematica
Tag
  • AUTOMORFISMI
  • ISOMORFISMO
  • MATEMATICA
Altri risultati per endomorfismo
  • endomorfismo
    Enciclopedia della Matematica (2013)
    endomorfismo in algebra, morfismo di un insieme A, dotato di un’opportuna struttura, in sé stesso. In riferimento a strutture algebriche come spazi vettoriali, gruppi o anelli, per endomorfismo si intende, rispettivamente, un’applicazione lineare di uno spazio vettoriale in sé stesso (rappresentata, ...
Vocabolario
endomorfismo
endomorfismo s. m. [comp. di endo- e -morfismo]. – 1. In petrografia, sinon. di endometamorfismo. 2. In matematica, l’omomorfismo di un’algebra con sé stessa o con una sua sottoalgebra.
endomòrfo
endomorfo endomòrfo agg. [comp. di endo- e -morfo]. – Di regioni, minerali, ecc., originati da endometamorfismo.
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali