• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

funzione olomorfa

Enciclopedia della Matematica (2017)
  • Condividi

funzione olomorfa


funzione olomorfa in un aperto Ω ⊆ C, funzione ƒ(z), complessa di variabile complessa, per la quale esiste in Ω la derivata complessa ƒ′ (z); in altri termini, si tratta di una funzione che è derivabile in senso complesso in tutti i punti in cui è definita, vale a dire esiste il limite

Enciclopedia della Matematica formula lettf 04670 001.jpg

dove Δz è un incremento complesso, in tutto l’insieme di valori complessi per i quali è definita. In questo caso si precisa, appunto, che la funzione è olomorfa in Ω (→ olomorfia) e tale sua connotazione la caratterizza come funzione analitica in Ω (il termine «olomorfia» è sinonimo di «analiticità»). Per le funzioni olomorfe o analitiche si parla di punti di singolarità quando viene a mancare la continuità della funzione o di una delle sue derivate: la funzione ha un punto z0 di singolarità se essa non è olomorfa in z0; se ƒ è olomorfa in un cerchio centrato in z0, privato del centro, la singolarità si dice isolata; se lo sviluppo in serie di → Laurent ha i coefficienti delle potenze negative tutti nulli la singolarità si dice eliminabile; se ha un numero finito di tali coefficienti non nulli, z0 si chiama polo della funzione; la singolarità si dice essenziale se i detti coefficienti non nulli sono infiniti.

Vedi anche
funzioni meromorfe In matematica, funzioni analitiche a un sol valore di una variabile complessa che in ogni regione limitata del piano complesso non possiedano singolarità oppure possiedano solo singolarità polari. La definizione si estende alle funzioni di più variabili complesse, per le quali le sole singolarità ammesse ... singolarità fisica In fluidodinamica, qualsiasi punto del campo di moto di un fluido irrotazionale, non viscoso e a densità costante in cui la funzione potenziale di velocità Φ assuma valore infinito o non sia monovalore (detto più propriamente punto singolare). Le s. possono essere puntiformi (sorgenti e pozzi), ... applicazione Matematica Il concetto di a. è una generalizzazione del concetto classico di funzione (➔ corrispondenza). Si parla di a. di un insieme P in un insieme Q, quando tra i due si stabilisce una corrispondenza del tipo seguente: a ogni elemento di P corrisponde un ben determinato elemento di Q, mentre un elemento ... anàlisi infinitesimale (o càlcolo) Parte della matematica (detta anche semplicemente analisi matematica) i cui metodi e sviluppi sono fondati sull'operazione di passaggio al limite. Suoi iniziatori sono considerati nel 17° sec. I. Newton e G.W. Leibniz, tuttavia ha avuto il suo sviluppo solo in seguito alla definizione rigorosa ...
Tag
  • FUNZIONE Ƒ, COMPLESSA
  • FUNZIONE ANALITICA
  • SERIE DI → LAURENT
  • DERIVATA COMPLESSA
  • FUNZIONI OLOMORFE
Vocabolario
olomorfòṡi
olomorfosi olomorfòṡi (alla greca olomòrfoṡi) s. f. [comp. di olo- e -morfosi]. – In biologia, processo rigenerativo del tipo dell’omomorfosi, in cui la parte asportata si rigenera completamente, con la stessa struttura e le stesse dimensioni...
olomòrfo
olomorfo olomòrfo agg. [comp. di olo- e -morfo]. – In matematica, sinon. di analitico, usato quando si considerino funzioni di una o più variabili complesse.
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali