Haar, misura di
Haar, misura di per un gruppo topologico compatto e abeliano G(⋅), è una misura di Borel μ che soddisfa le seguenti condizioni:
• μ(x ⋅ S) = μ(S ⋅ x) = μ(S) per ogni x ∈ G e ogni sottoinsieme misurabile S ⊆ G;
• μ(A) > 0 per ogni sottoinsieme aperto e non vuoto A ⊆ G;
• μ(E) < ∞ per ogni sottoinsieme compatto E ⊆ G.
Per esempio, la misura di Lebesgue è una misura di Haar sul gruppo moltiplicativo dei reali non nulli (→ Borel, misura di; → Lebesgue, misura di).