• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
29 risultati
Tutti i risultati [256]
Analisi matematica [29]
Matematica [141]
Algebra [49]
Fisica [48]
Fisica matematica [39]
Storia della matematica [34]
Temi generali [28]
Filosofia [25]
Geometria [20]
Statistica e calcolo delle probabilita [18]

NUMERI

XXI Secolo (2010)

Numeri Umberto Zannier Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] un certo senso, ci siano più numeri trascendenti che numeri naturali o numeri algebrici. L’attività di Cantor si sviluppò molto oltre queste idee. Egli costruì un’intera teoria degli insiemi infiniti, o se si vuole dei numeri infiniti; a partire dal ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA

L'Ottocento: matematica. Equazioni differenziali ordinarie

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali ordinarie Jeremy Gray Equazioni differenziali ordinarie Variabili reali Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] con z complesso), egli poneva l'accento sulla necessità di individuare l'insieme dei valori di x o di z per i quali la somma della serie è lineari di queste ultime. Tale caratteristica costituisce un'importante sorgente di idee per l'algebra lineare ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

vettore

Dizionario delle Scienze Fisiche (1996)

vettore vettóre [agg. m. e s.m. (per il f. → vettrice) Der. del lat. vector -oris "conducente, portatore", dal part. pass. vectus di vehere "condurre, portare"] [ALG] Ente che permette di descrivere [...] due sopra dette per i v. (così accade, per es., per certi insiemi di matrici, insiemi di funzioni, ecc.) ha condotto a uno studio sempre più astratto e generale delle proprietà algebriche dei v., e ha portato alla formulazione generale della nozione ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su vettore (6)
Mostra Tutti

funzione

Dizionario delle Scienze Fisiche (1996)

funzione funzióne [Der. del lat. functio -onis, dal part. pass. functus di fungi "adempiere"] Concetto che s'identifica con quello di applicazione, essendo peraltro preferito se l'insieme di arrivo è [...] : v. liquido, stato: III 451 c. ◆ F. dimensione relativa: v. algebre di operatori: I 99 a. ◆ F. di modello: v. reazioni nucleari: IV 762 f. ◆ F. di partizione: dato un elemento di un insieme statistico, o più in generale, data una distribuzione ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su funzione (8)
Mostra Tutti

continuita

Dizionario delle Scienze Fisiche (1996)

continuita continuità [Der. di continuo "l'essere continuo", nei vari signif. di questo termine] [LSF] Sulla base delle teorie quantistiche, per le quali i corpi sono sostanzialmente discontinui, la [...] C. sulle successioni crescenti (e decrescenti): per un'algebra L su un insieme e un'applicazione μ di L in [0,+∞], proprietà di μ per cui μ(A)= supnμ(An), per ogni elemento A di L e ogni successione crescente (An) di elementi di L tale che sia A=⋃nAn ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA TECNICA – METROLOGIA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su continuita (2)
Mostra Tutti

misura di Wiener

Enciclopedia della Scienza e della Tecnica (2008)

misura di Wiener Luca Tomassini Una misura di probabilità sullo spazio C([0,1],ℝ) delle funzioni continue a valori reali sull’intervallo chiuso [0,1] definita come segue. Siano 0⟨t1⟨...⟨tν≤1 punti arbitrari [...] arbitrarie o intersezioni finite di intervalli chiusi). Indichiamo infine con C(t1,...,tν;A1,...,Aν) l’insieme di tutte le funzioni x 2τ. La misura può essere poi estesa alla σ-algebra dei sottoinsiemi boreliani di C([0,1],ℝ) generata dai C(t1,...,tν; ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: TEORIA DELL’INTEGRAZIONE – DENSITÀ DI PROBABILITÀ – MISURA DI LEBESGUE – FUNZIONALE LINEARE – FUNZIONI CONTINUE

operazione

Enciclopedia on line

Economia In scienza della gestione, gestione delle o., l’insieme dei processi e delle attività che utilizzano risorse (umane e finanziarie, macchinari, informazioni, tecnologie ecc.) per trasformare ingressi [...] reali, complessi). In algebra, le o. vengono definite come corrispondenze tra elementi di uno o più insiemi, stabilite sulla base delle proprietà astratte di tali insiemi, senza riferimento a particolari rappresentazioni numeriche di essi; sono dette ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – ARITMETICA – LOGICA MATEMATICA – TEMI GENERALI
TAGS: SCIENZA DELLA GESTIONE – ESTRAZIONE DI RADICE – TEORIA DEI NUMERI – LOGICA MATEMATICA – INSIEME NUMERICO
Mostra altri risultati Nascondi altri risultati su operazione (1)
Mostra Tutti

teoria dei semigruppi

Enciclopedia della Scienza e della Tecnica (2008)

teoria dei semigruppi Luca Tomassini Un semigruppo è un insieme con una operazione binaria * (comunemente detta moltiplicazione) che soddisfi la proprietà associativa: a*(b*c)=(a*b)*c. Un semigruppo [...] algebrica degli automi (semigruppi di automi). Un fatto, questo, che appare naturale a causa dell’enorme varietà di esempi di semigruppi tra i quali ricordiamo: insiemi di numeri chiusi per addizione o moltiplicazione, semigruppi di matrici, di ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Bourbaki Nicolas

Dizionario delle Scienze Fisiche (1996)

Bourbaki Nicolas Bourbaki 〈burbakì〉 Nicolas [ALG] [ANM] Pseudonimo sotto il quale un gruppo di matematici francesi (tra cui H. Cartan, C. Chevalley, J. Dieudonné, A. Weil) a partire dal 1939 iniziò a [...] , cioè una sintesi dei suoi diversi rami analizzandone le strutture fondamentali profondamente connesse, partendo dalla teoria degli insiemi, dall'algebra astratta e dalla topologia generale; tale movimento di pensiero matematico è detto bourbakismo. ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
1 2 3
Vocabolario
àlgebra
algebra àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali