• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
34 risultati
Tutti i risultati [256]
Storia della matematica [34]
Matematica [141]
Algebra [49]
Fisica [48]
Fisica matematica [39]
Temi generali [28]
Analisi matematica [29]
Filosofia [25]
Geometria [20]
Statistica e calcolo delle probabilita [18]

Scienza indiana. La scienza nella cultura indiana

Storia della Scienza (2001)

Scienza indiana. La scienza nella cultura indiana Frits Staal La scienza nella cultura indiana Il concetto di scienza e la classificazione delle scienze Per designare le conoscenze sistematiche indiane [...] richiede non "un'enumerazione di 'scoperte isolate'", ma "il raffronto di insiemi completi di idee con le loro relazioni conceptual origins of our numeral system and the symbolic form of algebra, "Archive for history of exact sciences", 36, 1986, pp ... Leggi Tutto
CATEGORIA: FILOSOFIA DEL LINGUAGGIO – TEMI GENERALI – STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La grande scienza. Cronologia scientifica: 1961-1970

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1961-1970 1961-1970 1961 Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] polacco Stanislaw Łojasiewicz introduce e studia la nozione di insieme semianalitico e, qualche anno dopo, di insieme semialgebrico, dando così un notevole impulso alla geometria algebrica reale. Le disequazioni variazionali. Il matematico italiano ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – STORIA DELLA BIOLOGIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La scienza bizantina e latina: la nascita di una scienza europea. Le discipline matematiche

Storia della Scienza (2001)

La scienza bizantina e latina: la nascita di una scienza europea. Le discipline matematiche Menso Folkerts Richard P. Lorch Anne Tihon Le discipline matematiche La matematica nell'Europa latina di [...] tradotto in latino per ben tre volte, insieme ad alcuni commenti relativi; nel campo dell'aritmetica, fu tradotto il testo di al-Ḫwārazmī sul calcolo indiano, mentre per l'algebra furono tradotte opere arabe di al-Ḫwārazmī, Abū Kāmil e del Liber ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] Nel 1805, mentre studiava dal punto di vista della teoria dei numeri le equazioni algebriche di terzo e quarto grado, Gauss funzione fosse definita su una famiglia di insiemi aperti bidimensionali. Tali insiemi si possono intersecare, ma non è ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] algebrica di quantità finite". Sulla base degli sviluppi in serie di di insiemi 'derivati' di punti, che Cantor definiva a partire dal concetto di punto-limite (o punto di accumulazione) di un insieme infinito di punti. Un punto-limite di un insieme ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] Gottinga. Egli introduce le strutture algebriche di gruppo, anello, campo e così via, assumendo come primitivo il concetto di insieme, si serve del sistema assiomatico di Zermelo e Fraenkel, ma dichiara di non voler entrare "nelle difficoltà inerenti ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] di definire card(X) come la classe di equivalenza [X] di X nella relazione ∼ fra insiemi, cioè [2] card(X)=def la classe di tutti gli insiemi Y tali che X∼Y. Si deve notare che qui le nozioni di 'insieme fondamentali risultati in algebra, teoria dei ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] è costituito dalla logica formale e dalla teoria degli insiemi. Le strutture sono classificate in ordine di complessità crescente. È così che all'inizio sono esaminate le strutture algebriche e topologiche, in seguito collegate. La retta dei numeri ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele Peter Schreiber Geometria analitica, delle curve e delle superfici. Il problema delle parallele A [...] coordinate ai punti, senza andare oltre. È ancora di là da venire il punto di vista che considera i coefficienti di un'equazione o di un sistema di equazioni algebriche come coordinate dell'insieme di punti che queste descrivono, e le equazioni come ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] di un insieme S si intende una famiglia F di insiemi aperti, tale che ogni punto di S sia contenuto in almeno uno di detti insiemi. teoria delle algebre di operatori. Dopo il lavoro di Hilbert e prima di quello di von Neumann sugli spazi di Hilbert, ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3 4
Vocabolario
àlgebra
algebra àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali