• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
35 risultati
Tutti i risultati [160]
Algebra [35]
Matematica [79]
Fisica [72]
Fisica matematica [35]
Temi generali [22]
Elettrologia [21]
Storia della fisica [21]
Analisi matematica [20]
Geometria [16]
Fisica nucleare [17]

trasformazione

Enciclopedia on line

trasformazione Mutamento di forma, di aspetto, di struttura. Biologia Trasformazione batterica Fenomeno che si verifica spontaneamente in natura quando le cellule si trovano in uno stadio, detto competente, [...] opera su una distribuzione bidimensionale di un campo elettromagnetico una t. secondo Fourier: una è degenere, anche la t. si dice degenere. In generale, in uno spazio vettoriale S su un corpo K, con infinite dimensioni, si dice lineare una t. T ... Leggi Tutto
CATEGORIA: GENETICA – ALGEBRA – DIRITTO PRIVATO – METODI TEORIE E PROVVEDIMENTI
TAGS: EQUAZIONE DIFFERENZIALE LINEARE – RESISTENZA AGLI ANTIBIOTICI – FUNZIONE DI TRASFERIMENTO – GRUPPO UNITARIO SPECIALE – GRUPPO LINEARE SPECIALE

EQUAZIONI

Enciclopedia Italiana - VI Appendice (2000)

(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131). Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] un parametro α. Così il parametro v appartiene a uno spazio vettoriale di dimensione uno e quindi possiamo denotarlo con v, cioè con Y′∙/∙Y−(6Y²+t)∙/∙Y′:K[Y, Y′]→K[Y, Y′] per un campo differenziale K estensione di C(t), dove Y e Y′ sono variabili su ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE – ACCADEMIA DELLE SCIENZE DI PARIGI – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONI ALLE DERIVATE PARZIALI – DISUGUAGLIANZA ISOPERIMETRICA
Mostra altri risultati Nascondi altri risultati su EQUAZIONI (9)
Mostra Tutti

Algebra

Enciclopedia del Novecento (1975)

Algebra Irving Kaplansky sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] il miglior risultato possibile. Per le matrici 2 × 2 su un campo ed anche per i corpi di quaternioni su F (cioè algebre con modo di descriverla può essere il seguente: siano V e W due spazi vettoriali di dimensione 3 su un dato corpo F, e sia C l' ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ALGEBRA – COSTRUZIONI CON RIGA E COMPASSO – DOMINIO A FATTORIZZAZIONE UNICA – INSIEME PARZIALMENTE ORDINATO – RAPPRESENTAZIONI IRRIDUCIBILI
Mostra altri risultati Nascondi altri risultati su Algebra (9)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] è superata nel libro edito nel 1981. Il primo capitolo inizia illustrando l'idea generale di spazio vettoriale topologico su un campo valutato. La completezza conduce agli spazi di Banach. Si studiano i sottospazi, le parti equilibrate, le parti ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

Equazioni funzionali

Enciclopedia del Novecento (1977)

Equazioni funzionali JJacques Louis Lions di Jacques Louis Lions Equazioni funzionali sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] e della terza condizione (8) e definiamo Indicata con u(t) la funzione vettoriale x → u(x, t), si vede che, se u è soluzione ‛regolare in certe questioni della teoria quantistica dei campi. Visto il ruolo fondamentale svolto dalla trasformazione ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – FUNZIONI A QUADRATO SOMMABILE – TEORIA QUANTISTICA DEI CAMPI – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Equazioni funzionali (2)
Mostra Tutti

momento

Dizionario delle Scienze Fisiche (1996)

momento moménto [Der. del lat. momentum "piccola causa di movimento", dalla radice di movere "muovere", e poi "piccola cosa" in genere] [LSF] Oltre ai signif. nella meccanica e in discipline a questa [...] . dielettrico: II 119 c. ◆ [MCC] M. d'inerzia: → inerzia. ◆ [ANM] M. dipolare: nella teoria dei campi, lo stesso che sorgente vettoriale (cioè di rango 1) di un campo vettoriale; se la sorgente è un dipolo, s'identifica con il m. di dipolo di essa (v ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su momento (2)
Mostra Tutti

sorgente

Dizionario delle Scienze Fisiche (1996)

sorgente sorgènte [s.f. dall'agg. sorgente, part. pres. di sorgere, der. del lat. surgere, sincope di subrigere "innalzare", comp. di sub- "sotto" e regere "reggere"] [LSF] La causa, l'oggetto e il luogo [...] : v. gasdinamica radiativa: II 830 e. ◆ [ASF] S. radio quasi stellare: lo stesso che quasar. ◆ [ALG] S. scalare di un campo vettoriale: v. campi, teoria classica dei: I 470 e. ◆ [ASF] S. X astrofisiche: v. astronomia X: I 249 c. ◆ [ASF] S. X compatta ... Leggi Tutto
CATEGORIA: ACUSTICA – ASTROFISICA E FISICA SPAZIALE – BIOFISICA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA DEI FLUIDI – OTTICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su sorgente (2)
Mostra Tutti

lineare

Dizionario delle Scienze Fisiche (1996)

lineare lineare [agg. Der. del lat. linearis, da linea] [LSF] Inerente a una linea, in partic : (a) che è costituito o è schematizzabile da una linea (per lo più retta) o che si sviluppa prevalentemente [...] somma di vettori e il prodotto fra un numero e un vettore (nel caso di applicazioni tra spazi vettoriali su campi diversi si parla di applicazioni semilineari). ◆ [ELT] Bipolo (condensatore, induttore, resistore) l.: un bipolo le cui caratteristiche ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – METROLOGIA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su lineare (2)
Mostra Tutti

spostamento

Dizionario delle Scienze Fisiche (1996)

spostamento spostaménto [Der. di spostare, da posto con il pref. di separazione s-] [ALG] Movimento rigido dello spazio (o del piano) in sé, lo stesso che isometria diretta, cioè corrispondenza biunivoca [...] I 590 f. ◆ [EMG] S. elettrico, o dielettrico: lo stesso che induzione elettrica, una delle grandezze vettoriali necessarie per descrivere un campo elettrico nella materia: v. dielettrico: II 121 c; la denomin. (ingl. electric displacement) è dovuta a ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su spostamento (2)
Mostra Tutti

algebra non commutativa

Enciclopedia della Scienza e della Tecnica (2008)

algebra non commutativa Luca Tomassini Sia F un campo, ovvero un corpo commutativo. Un insieme A è detto F-algebra (o algebra su F) se è uno spazio vettoriale sul campo F (per es., i campi ℚ, ℝ, ℂ dei [...] di algebra (associativa ma non commutativa) è infatti costituito dall’insieme L(V) delle applicazioni lineari di uno spazio vettoriale V (su un campo F) in sé stesso; se V è di dimensione finita n, allora quest’algebra è isomorfa all’algebra delle ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – APPLICAZIONI LINEARI – SPAZIO VETTORIALE – ALGEBRA LINEARE – ALGEBRE DI LIE
Mostra altri risultati Nascondi altri risultati su algebra non commutativa (4)
Mostra Tutti
1 2 3 4
Vocabolario
campo
campo s. m. [lat. campus «campagna, pianura» poi «campo di esercitazioni, campo di battaglia»]. – Termine che ha assunto (per evoluzione dai sign. principali che già aveva nella lingua d’origine) notevole varietà di accezioni e di usi, rimanendo...
vettoriale
vettoriale agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali