potenza
potènza [Der. del lat. potentia, dall'agg. potens -entis "potente", part. pres. di posse "potere"] [LSF] (a) Generic., capacità di produrre grandi effetti. (b) Specific., l'energia che viene [...] p. riferita all'unità di area di una superficie. ◆ [ALG] P. delcontinuo: la p. dell'insieme dei numeri reali, indicata con i simb. א₁ ] P. di un insieme: il numero cardinale degli elementi dell'insieme (→ cardinalità), indicato con il simb. ℬ ("P ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] (secondo il lemma di Zorn) la cui cardinalità è univocamente determinata e si dice ‛dimensione (t) = exp (At) x0. Per ‛soluzione' del problema astratto di Cauchy, si intende una funzione 0 ≤ t → x (t) continua e differenziabile per t > 0, con x (0 ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] quindi, un numero naturale come una cardinalità, e si parla allora di numero cardinale.
Da tutto ciò vediamo che questo sul concetto di continuità; nel caso della retta, ossia del sistema dei numeri reali, la continuità esprime il fatto intuitivo ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] puntuale, ma il viceversa è falso se l'insieme X ha cardinalità infinita. Lo spazio di Banach ℬ(X) è separabile se l'applicazione inversa (T−ζI)−1 di L in E è continua; il teorema del grafico chiuso implica allora che sia L=E. Il complementare dell' ...
Leggi Tutto
continuo3
contìnuo3 s. m. [uso sostantivato dell’agg. continuo]. – 1. a. In generale, ciò che ha continuità nel tempo e nello spazio, che non ha interruzioni, separazioni: il concetto, la nozione del c.; più particolarm., in fisica e in filosofia,...
famìglia s. f. [lat. famĭlia, che (come famŭlus «servitore, domestico», da cui deriva) è voce italica, forse prestito osco, e indicò dapprima l’insieme degli schiavi e dei servi viventi sotto uno stesso tetto, e successivamente la famiglia nel...