cardinalitacardinalità [Der. di cardinale] [ALG] Nella teoria degli insiemi, proprietà di insiemi, introdotta da G. Cantor, che permette di stabilire sia l'equipotenza, sia l'ordinamento degli insiemi [...] medesimi: (a) si dice che due insiemi (finiti o infiniti) hanno la stessa c. (o numerosità o potenza) quando è possibile stabilire fra gli elementi del-l'uno e quelli dell'altro una corrispondenza biunivoca; ...
Leggi Tutto
equipotente
equipotènte [agg. Comp. di equi- e potente] [ALG] Insiemi e.: insiemi che hanno la stessa potenza (o cardinalità, o numerosità), tali cioè che gli elementi dell'uno possono mettersi in corrispondenza [...] biunivoca con quelli dell'altro; sono tali, per es., l'insieme dei numeri interi e quello dei numeri razionali ...
Leggi Tutto
numerosita
numerosità [Der. del lat. numerositas -atis, da numerosus "numeroso"] [LSF] L'essere costituito da molti elementi. ◆ [ALG] Nella teoria degli insiemi, sinon. di potenza (→ cardinalità). ...
Leggi Tutto
discretezza
discretézza [Der. di discreto] [ALG] Caratteristica di una struttura spaziale (o temporale) discreta, cioè tale che in essa il principio delle relazioni metriche è implicito nel concetto [...] stesso dello spazio (o del tempo) ed è espresso dalla cardinalità numerica degli elementi (in contrapp. al caso di una struttura continua, in cui, a causa dell'equicardinalità di tutti gli intervalli del continuo reale non sussiste alcun attributo ...
Leggi Tutto
Lowenheim Leopold
Löwenheim 〈lö´vënhàim〉 Leopold [STF] (Krefeld 1878 - Berlino 1940) Prof. di matematica nel liceo di Berlino-Lichtenberg. ◆ [ALG] [FAF] Teorema di L.: un'espressione in cui non occorrono [...] variabili predicative poliadiche, ma solo k monadiche, ammette un modello se e solo se ne ammette uno di cardinalità 2k. ◆ [ALG] [FAF] Teoremi di L.-Skolem: v. logica: III 485 e. ...
Leggi Tutto
Categoricità
Silvio Bozzi
Concetto introdotto nel 1905 dal matematico Oscar Veblen e oggi al centro di gran parte dell’attuale teoria dei modelli. In termini generali, una teoria T formulata in un qualsiasi [...] teoria, ben più complesso è lo studio delle teorie ℵ1-categoriche o di quello totalmente categoriche (categoriche in ogni cardinalità e dotate di modelli infiniti). A questo scopo è stata sviluppata la teoria della stabilità, nella forma datale da ...
Leggi Tutto
cardinalecardinàle [agg. Der. del lat. cardinalis, der. di cardo -inis "cardine", e quindi "fondamentale", "principale"] [MCC] Equazioni c. della dinamica o della meccanica: per un sistema materiale, [...] la proprietà di un insieme che rimane dopo aver astratto la natura qualitativa dei suoi elementi (G.Cantor), cioè la cardinalità (←) dell'insieme; tale nozione può essere applicata anche a insiemi infiniti e allora si parla di numeri c. transfiniti ...
Leggi Tutto
Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti [...] . Si dimostra anche che R, con le operazioni e relazioni di cui sopra, contiene un sottoinsieme isomorfo a Q e che la sua cardinalità è maggiore di quella di N; R è cioè «più che numerabile». La costruzione dei n. complessi a partire dai n. reali si ...
Leggi Tutto
Finito
Antonio Machì
(XV, p. 399)
Matematica del finito
Diversi filoni della ricerca matematica che mostrano particolare vitalità si possono ricondurre all'interesse per i problemi del finito. L'analisi [...] e facce di una carta. Quest'asimmetria scompare lasciando cadere l'ipotesi che una delle due partizioni abbia le classi di cardinalità due; si ha così un ipergrafo, e introducendo un ordine nelle classi si ottiene una coppia di permutazioni (σ, α ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] di un insieme; si può concepire, quindi, un numero naturale come una cardinalità, e si parla allora di numero cardinale.
Da tutto ciò vediamo che questo concetto basilare di numero comporta in effetti una certa astrazione e, pur motivato da ...
Leggi Tutto
cardinalato
s. m. [der. di cardinale2]. – Dignità e ufficio di cardinale, e anche il tempo che dura quest’ufficio: promuovere, elevare, innalzare al cardinalato.
cardinale1
cardinale1 agg. [dal lat. cardinalis, der. di cardo -dĭnis «cardine»]. – 1. Che fa da cardine, principale: una verità c.; le idee c. di una teoria; i principî c. di un sistema; fissare i punti c. di una questione; in partic., le...