Geometria non commutativa
Irving E. Segal
Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] in H. C(z) è definibile come la chiusura dell'operatore su P+, p(z) → zp(z) - e pertanto soddisfa le usuali relazioni di commutazione canoniche - e Γ(U) come la chiusura dell'operatore in K che porta p(z) in p(Uz).
Per costruire il campo di fermioni ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] di algebra C* al quale si applica la teoria è l'anello di gruppo di un gruppo discreto; quindi non è certo opportuno limitarsi ad algebre commutative. Sia A un'algebra C*, e siano K0(A) e K1(A) i suoi gruppi di K-teoria. Così K0(A) è la K-teoria ...
Leggi Tutto
In matematica, si dice di struttura nella quale sia definita un’operazione che non è commutativa (➔ commutativa, proprietà). Tali strutture hanno assunto un ruolo importante nella caratterizzazione della [...] che le proprietà di un insieme di punti di uno spazio possono essere descritte mediante le proprietà di anelli commutativi di funzioni (anelli di funzioni C∞), definite sull’insieme di punti. In questo modo il concetto geometrico di spazio ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] algebre di Lie scindibili.
L'ottavo capitolo comincia con lo studio dell'algebra di Lie SL(2,k) per un corpo commutativo k di caratteristica zero e le sue rappresentazioni, per passare poi all'algebra di Lie semisemplice dispiegata. Vi si descrivono ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] il concetto di varietà algebrica, di dimensione, di punto generico, e così via, facendo uso degli strumenti dell'algebra commutativa che si erano andati sviluppando con Emmy Noether (1882-1935), con il suo allievo van der Waerden e con Zariski ...
Leggi Tutto
L'Ottocento: matematica. Calcolo geometrico
Paolo Freguglia
Gert Schubring
Calcolo geometrico
Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] e orientati. La novità e la singolarità di tale nozione di prodotto consisteva nel fatto che esso non era più commutativo, bensì anticommutativo.
Stabilito così un calcolo vettoriale, la vera conquista di Grassmann fu che, pur operando con oggetti ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] il rango della sua algebra di Lie, cioè la codimensione di una generica orbita coaggiunta. Nel teorema di integrabilità non commutativa si dimostra che, se la dimensione 2n della varietà simplettica eguaglia la somma della dimensione del gruppo e del ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] rappresentazioni. Sia V uno spazio vettoriale di dimensione n sul campo complesso ℂ, allora l'algebra degli operatori su V⊗m che commutano con il gruppo lineare GL(n,ℂ) di V è generata dal gruppo simmetrico Sm (primo teorema). Inoltre l'azione dell ...
Leggi Tutto
struttura di spin
Luca Tomassini
Un fibrato principale π∼:P∼→M su una varietà n-dimensionale M con gruppo di struttura Spinn che sia ottenuto come ricoprimento di un qualche fibrato principale π [...] definito dalla
dove ∇si (i=1,...,n) sono le derivate covarianti nella direzione dei campi di vettori ortonormali si . L’operatore di Dirac è l’oggetto del teorema dell’indice di Atiya-Singer nella sua forma più generale.
→ Geometria non commutativa ...
Leggi Tutto
commutare
v. tr. [dal lat. commutare, comp. di con- e mutare «mutare»] (io commùto, ecc.). – 1. a. Sostituire una cosa con un’altra, scambiare fra loro due cose (anticam. anche persone): c. i fattori di una moltiplicazione; la pena di morte...